論文の概要: Scaling Capability in Token Space: An Analysis of Large Vision Language Model
- arxiv url: http://arxiv.org/abs/2412.18387v3
- Date: Mon, 25 Aug 2025 08:35:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 16:37:41.155043
- Title: Scaling Capability in Token Space: An Analysis of Large Vision Language Model
- Title(参考訳): トークン空間における拡張性:大規模視覚言語モデルの解析
- Authors: Tenghui Li, Guoxu Zhou, Xuyang Zhao, Qibin Zhao,
- Abstract要約: 本研究では,視覚トークン数に関して,視覚言語モデルに類似したスケーリング関係が存在するかを検討する。
視覚トークン数と視覚参照シーケンス間の距離のばらつきを特徴付ける数学的枠組みを開発した。
複数の視覚言語ベンチマークにおける実証的な検証は、モデルパフォーマンスがスケーリング関係からの予測と一致していることを示している。
- 参考スコア(独自算出の注目度): 38.31058128959956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models have demonstrated predictable scaling behaviors with respect to model parameters and training data. This study investigates whether a similar scaling relationship exist for vision-language models with respect to the number of vision tokens. A mathematical framework is developed to characterize a relationship between vision token number and the expected divergence of distance between vision-referencing sequences. The theoretical analysis reveals two distinct scaling regimes: sublinear scaling for less vision tokens and linear scaling for more vision tokens. This aligns with model performance relationships of the form \(S(n) \approx c / n^{\alpha(n)}\), where the scaling exponent relates to the correlation structure between vision token representations. Empirical validations across multiple vision-language benchmarks show that model performance matches the prediction from scaling relationship. The findings contribute to understanding vision token scaling in transformers through a theoretical framework that complements empirical observations.
- Abstract(参考訳): 大規模言語モデルでは、モデルパラメータやトレーニングデータに対する予測可能なスケーリング動作が実証されている。
本研究では,視覚トークン数に関して,視覚言語モデルに類似したスケーリング関係が存在するかを検討する。
視覚トークン数と視覚参照シーケンス間の距離のばらつきを特徴付ける数学的枠組みを開発した。
理論的解析により、より少ない視覚トークンに対するサブ線形スケーリングと、より多くの視覚トークンに対する線形スケーリングの2つの異なるスケーリング機構が明らかになった。
これは \(S(n) \approx c / n^{\alpha(n)}\ という形のモデル性能関係と一致し、スケーリング指数は視覚トークン表現間の相関構造と関係する。
複数の視覚言語ベンチマークにおける実証的な検証は、モデルパフォーマンスがスケーリング関係からの予測と一致していることを示している。
この知見は、経験的観察を補完する理論的枠組みを通じて、トランスフォーマーにおける視覚トークンのスケーリングを理解することに寄与する。
関連論文リスト
- VisionReasoner: Unified Visual Perception and Reasoning via Reinforcement Learning [55.34552054232695]
複数の視覚知覚タスクの推論と解決が可能な統合フレームワークであるVisionReasonerを紹介する。
VisionReasonerは、検出、セグメンテーション、カウントという3つの重要な領域にまたがる10のタスクに対して評価する。
論文 参考訳(メタデータ) (2025-05-17T16:51:47Z) - Causal-Inspired Multitask Learning for Video-Based Human Pose Estimation [18.826857684901118]
本稿では2段階からなる因果時間モデリングフレームワークを提案する。
第1段階では、2つの自己超越補助タスクを導入することにより、因果時間モデリング能力を備えたモデルを提供する。
第2段階では、すべての特徴トークンが、ポーズ推定に等しく寄与するわけではないと論じる。
提案手法は3つの大規模ベンチマークデータセット上で最先端の手法より優れている。
論文 参考訳(メタデータ) (2025-01-24T09:45:16Z) - Core Context Aware Attention for Long Context Language Modeling [50.774702091154204]
本稿では,CCA(Core Context Aware)アテンションを効果的に長距離コンテキストモデリングのためのプラグイン・アンド・プレイとして提案する。
CCA-Attentionは、計算効率と長文モデリング能力の観点から、最先端モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-12-17T01:54:08Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
高解像度の画像やビデオは、彼らの広く普及するための障壁となる。
MLLMにおける視覚トークンの圧縮は、推論コストを削減するための有望なアプローチとして現れている。
本稿では,事前学習した視覚エンコーダの能力を利用して類似画像セグメントをグループ化する,新たなグループ化機構であるVisToGを紹介する。
論文 参考訳(メタデータ) (2024-11-26T09:36:02Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
我々は、視覚トークンの数を減らさずに、冗長な視覚トークンを「スキップ層」として活用することで、視覚計算を減らし、新しいアプローチを導入する。
提案手法であるVideoLLM-MoDは深度混合LLMにインスパイアされ,長期・ストリーミングビデオにおける多数の視覚トークンの課題に対処する。
論文 参考訳(メタデータ) (2024-08-29T17:21:58Z) - Zero-Shot Embeddings Inform Learning and Forgetting with Vision-Language Encoders [6.7181844004432385]
IMM(Inter-Intra Modal Measure)は、微調整によるパフォーマンス変化の強力な予測器として機能する。
IIMMスコアの高いタスクの微調整はドメイン内のパフォーマンス向上をもたらすが、ドメイン外のパフォーマンス低下も引き起こす。
ターゲットデータの1つのフォワードパスだけで、実践者は、この重要な洞察を利用して、モデルが微調整後の改善を期待できる程度を評価することができる。
論文 参考訳(メタデータ) (2024-07-22T15:35:09Z) - On Efficient Language and Vision Assistants for Visually-Situated Natural Language Understanding: What Matters in Reading and Reasoning [33.89483627891117]
言語と視覚アシスタントの最近の進歩は印象的な能力を示しているが、透明性の欠如に悩まされている。
オープンソースモデルは、一般的なイメージタスクを効果的に処理するが、複雑な視覚的なテキスト理解の高度な計算要求に直面する。
本研究の目的は、キーコンポーネントを特定し、制約付き推論コストで効率的なモデルを作成することにより、視覚言語モデルの設計を再定義することである。
論文 参考訳(メタデータ) (2024-06-17T17:57:30Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
一般的に使われているユーザトークンモデルは、より複雑なモデルよりも一貫して優れています。
以上の結果から,コーパス統計とアノテータモデリング性能の関係が明らかになった。
論文 参考訳(メタデータ) (2024-04-02T22:27:24Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
限られたデータセットに基づいて,効率的な自己回帰に基づく視覚モデルを構築する。
このモデルは,高レベル・低レベルのセマンティック理解の両方にまたがる視覚的タスクにおいて,その習熟度をいかに達成するかを実証する。
我々の経験的評価は、モデルが様々なタスクに適応する際の機敏さを強調し、パラメータフットプリントの大幅な削減を図った。
論文 参考訳(メタデータ) (2024-02-07T13:41:53Z) - SeiT++: Masked Token Modeling Improves Storage-efficient Training [36.95646819348317]
近年のDeep Neural Network(DNN)モデルでは,コンピュータビジョンタスクのパフォーマンスが大幅に向上している。
高度に一般化可能で高性能なビジョンモデルを実現するには、拡張データセットが必要である。
SeiTによる最近のブレークスルーは、Vector-Quantized (VQ)特徴ベクトル(トークン)を視覚分類のためのネットワーク入力として使用することを提案した。
本稿では,自己指導型事前学習のためのMasked Token Modeling (MTM)を統合し,SeyTを拡張した。
論文 参考訳(メタデータ) (2023-12-15T04:11:34Z) - Vision-Enhanced Semantic Entity Recognition in Document Images via
Visually-Asymmetric Consistency Learning [19.28860833813788]
既存のモデルでは、視覚的エンコーダを弱いモード間監視信号で訓練することが一般的である。
そこで本稿では,textbfVisually-textbfAsymmetric cotextbfNsistentextbfCy textbfLearning (textscVancl) アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-23T10:37:22Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
継続的な学習は、以前の知識を忘れずに、一連のタスクでモデルを漸進的にトレーニングすることを目的としている。
本稿では,視覚的質問応答において,異なる設定がパフォーマンスに与える影響について詳細に検討する。
論文 参考訳(メタデータ) (2022-09-30T19:12:58Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
多視点問題は潜在変数モデルに直面することができる。
高次元問題と非線形問題は伝統的にカーネルメソッドによって扱われる。
両アプローチを単一モデルにマージすることを提案する。
論文 参考訳(メタデータ) (2020-06-01T14:25:38Z) - Feature Importance Estimation with Self-Attention Networks [0.0]
ブラックボックスニューラルネットワークモデルは、産業や科学で広く使われているが、理解と解釈が難しい。
近年,ニューラルネットワークモデルの内部動作に関する洞察を提供するアテンションメカニズムが導入されている。
本稿では、命題(タブラル)データから得られたモデルを説明する手段として、注目に基づくニューラルネットワーク機構を用いて特徴重要度を推定する。
論文 参考訳(メタデータ) (2020-02-11T15:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。