MotifGPL: Motif-Enhanced Graph Prototype Learning for Deciphering Urban Social Segregation
- URL: http://arxiv.org/abs/2412.18464v1
- Date: Tue, 24 Dec 2024 14:50:11 GMT
- Title: MotifGPL: Motif-Enhanced Graph Prototype Learning for Deciphering Urban Social Segregation
- Authors: Tengfei He, Xiao Zhou,
- Abstract summary: Social segregation in cities, spanning racial, residential, and income dimensions, is becoming more diverse and severe.<n>We propose a framework named Motif-Enhanced Graph Prototype Learning (MotifGPL)<n>MotifGPL consists of three key modules: prototype-based graph structure extraction, motif distribution discovery, and urban graph structure reconstruction.
- Score: 13.681538916025021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social segregation in cities, spanning racial, residential, and income dimensions, is becoming more diverse and severe. As urban spaces and social relations grow more complex, residents in metropolitan areas experience varying levels of social segregation. If left unaddressed, this could lead to increased crime rates, heightened social tensions, and other serious issues. Effectively quantifying and analyzing the structures within urban spaces and resident interactions is crucial for addressing segregation. Previous studies have mainly focused on surface-level indicators of urban segregation, lacking comprehensive analyses of urban structure and mobility. This limitation fails to capture the full complexity of segregation. To address this gap, we propose a framework named Motif-Enhanced Graph Prototype Learning (MotifGPL),which consists of three key modules: prototype-based graph structure extraction, motif distribution discovery, and urban graph structure reconstruction. Specifically, we use graph structure prototype learning to extract key prototypes from both the urban spatial graph and the origin-destination graph, incorporating key urban attributes such as points of interest, street view images, and flow indices. To enhance interpretability, the motif distribution discovery module matches each prototype with similar motifs, representing simpler graph structures reflecting local patterns. Finally, we use the motif distribution results to guide the reconstruction of the two graphs. This model enables a detailed exploration of urban spatial structures and resident mobility patterns, helping identify and analyze motif patterns that influence urban segregation, guiding the reconstruction of urban graph structures. Experimental results demonstrate that MotifGPL effectively reveals the key motifs affecting urban social segregation and offer robust guidance for mitigating this issue.
Related papers
- Interpreting core forms of urban morphology linked to urban functions with explainable graph neural network [9.236240033348516]
This study proposed the concept of core urban morphology representation and developed an explainable deep learning framework for explicably symbolizing complex urban forms.
We analyzed the core urban forms at the individual-building, block, and neighborhood level that are important to corresponding urban functions.
We prove that urban morphology directly affects land use efficiency, which has a significantly strong correlation with the location.
arXiv Detail & Related papers (2025-02-22T12:24:46Z) - InclusiViz: Visual Analytics of Human Mobility Data for Understanding and Mitigating Urban Segregation [41.758626973743525]
InclusiViz is a novel visual analytics system for multi-level analysis of urban segregation.
We developed a deep learning model to predict mobility patterns across social groups using environmental features, augmented with explainable AI.
The system integrates innovative visualizations that allow users to explore segregation patterns from broad overviews to fine-grained detail.
arXiv Detail & Related papers (2025-01-07T07:50:36Z) - Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
We provide a review and summary of the latest approaches, strategies, and insights that address distribution shifts within the context of graph learning.
We categorize existing graph learning methods into several essential scenarios, including graph domain adaptation learning, graph out-of-distribution learning, and graph continual learning.
We discuss the potential applications and future directions for graph learning under distribution shifts with a systematic analysis of the current state in this field.
arXiv Detail & Related papers (2024-02-26T07:52:40Z) - Uncover the nature of overlapping community in cities [4.497897224837208]
Our study introduces a graph-based physics-aware deep learning framework, illuminating the intricate overlapping nature inherent in urban communities.
Through analysis of individual mobile phone positioning data at Twin Cities metro area (TCMA) in Minnesota, USA, our findings reveal that 95.7 % of urban functional complexity stems from the overlapping structure of communities during weekdays.
arXiv Detail & Related papers (2024-01-31T22:50:49Z) - Attentive Graph Enhanced Region Representation Learning [7.4106801792345705]
Representing urban regions accurately and comprehensively is essential for various urban planning and analysis tasks.
We propose the Attentive Graph Enhanced Region Representation Learning (ATGRL) model, which aims to capture comprehensive dependencies from multiple graphs and learn rich semantic representations of urban regions.
arXiv Detail & Related papers (2023-07-06T16:38:43Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - A Contextual Master-Slave Framework on Urban Region Graph for Urban
Village Detection [68.84486900183853]
We build an urban region graph (URG) to model the urban area in a hierarchically structured way.
Then, we design a novel contextual master-slave framework to effectively detect the urban village from the URG.
The proposed framework can learn to balance the generality and specificity for UV detection in an urban area.
arXiv Detail & Related papers (2022-11-26T18:17:39Z) - Effective Urban Region Representation Learning Using Heterogeneous Urban
Graph Attention Network (HUGAT) [0.0]
We propose heterogeneous urban graph attention network (HUGAT) for learning the representations of urban regions.
In our experiments on NYC data, HUGAT outperformed all the state-of-the-art models.
arXiv Detail & Related papers (2022-02-18T04:59:20Z) - Neural Embeddings of Urban Big Data Reveal Emergent Structures in Cities [7.148078723492643]
We propose using a neural embedding model-graph neural network (GNN)- that leverages the heterogeneous features of urban areas.
Using large-scale high-resolution mobility data sets from millions of aggregated and anonymized mobile phone users in 16 metropolitan counties in the United States, we demonstrate that our embeddings encode complex relationships among features related to urban components.
We show that embeddings generated by a model trained on a different county can capture 50% to 60% of the emergent spatial structure in another county.
arXiv Detail & Related papers (2021-10-24T07:13:14Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
We propose an end-to-end framework that learns an implicit model of graph structure formation and discovers an underlying optimization mechanism.
The learned objective can serve as an explanation for the observed graph properties, thereby lending itself to transfer across different graphs within a domain.
GraphOpt poses link formation in graphs as a sequential decision-making process and solves it using maximum entropy inverse reinforcement learning algorithm.
arXiv Detail & Related papers (2020-07-07T16:51:39Z) - Deep Learning for Learning Graph Representations [58.649784596090385]
Mining graph data has become a popular research topic in computer science.
The huge amount of network data has posed great challenges for efficient analysis.
This motivates the advent of graph representation which maps the graph into a low-dimension vector space.
arXiv Detail & Related papers (2020-01-02T02:13:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.