Attentive Graph Enhanced Region Representation Learning
- URL: http://arxiv.org/abs/2307.03212v3
- Date: Sat, 1 Jun 2024 03:00:16 GMT
- Title: Attentive Graph Enhanced Region Representation Learning
- Authors: Weiliang Chen, Qianqian Ren, Jinbao Li,
- Abstract summary: Representing urban regions accurately and comprehensively is essential for various urban planning and analysis tasks.
We propose the Attentive Graph Enhanced Region Representation Learning (ATGRL) model, which aims to capture comprehensive dependencies from multiple graphs and learn rich semantic representations of urban regions.
- Score: 7.4106801792345705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representing urban regions accurately and comprehensively is essential for various urban planning and analysis tasks. Recently, with the expansion of the city, modeling long-range spatial dependencies with multiple data sources plays an important role in urban region representation. In this paper, we propose the Attentive Graph Enhanced Region Representation Learning (ATGRL) model, which aims to capture comprehensive dependencies from multiple graphs and learn rich semantic representations of urban regions. Specifically, we propose a graph-enhanced learning module to construct regional graphs by incorporating mobility flow patterns, point of interests (POIs) functions, and check-in semantics with noise filtering. Then, we present a multi-graph aggregation module to capture both local and global spatial dependencies between regions by integrating information from multiple graphs. In addition, we design a dual-stage fusion module to facilitate information sharing between different views and efficiently fuse multi-view representations for urban region embedding using an improved linear attention mechanism. Finally, extensive experiments on real-world datasets for three downstream tasks demonstrate the superior performance of our model compared to state-of-the-art methods.
Related papers
- Explainable Hierarchical Urban Representation Learning for Commuting Flow Prediction [1.5156879440024378]
Commuting flow prediction is an essential task for municipal operations in the real world.
We develop a heterogeneous graph-based model to generate meaningful region embeddings for predicting different types of inter-level OD flows.
Our proposed model outperforms existing models in terms of a uniform urban structure.
arXiv Detail & Related papers (2024-08-27T03:30:01Z) - Bridging Local Details and Global Context in Text-Attributed Graphs [62.522550655068336]
GraphBridge is a framework that bridges local and global perspectives by leveraging contextual textual information.
Our method achieves state-of-theart performance, while our graph-aware token reduction module significantly enhances efficiency and solves scalability issues.
arXiv Detail & Related papers (2024-06-18T13:35:25Z) - Fine-Grained Urban Flow Inference with Multi-scale Representation Learning [14.673004628911443]
We propose an effective fine-grained urban flow inference model called UrbanMSR.
It uses self-supervised contrastive learning to obtain dynamic multi-scale representations of neighborhood-level and city-level geographic information.
We validate the performance through extensive experiments on three real-world datasets.
arXiv Detail & Related papers (2024-06-14T04:42:29Z) - Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
We provide a review and summary of the latest approaches, strategies, and insights that address distribution shifts within the context of graph learning.
We categorize existing graph learning methods into several essential scenarios, including graph domain adaptation learning, graph out-of-distribution learning, and graph continual learning.
We discuss the potential applications and future directions for graph learning under distribution shifts with a systematic analysis of the current state in this field.
arXiv Detail & Related papers (2024-02-26T07:52:40Z) - Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation [19.419836274690816]
We propose a new spatial-temporal graph learning model (GraphST) for enabling effective self-supervised learning.
Our proposed model is an adversarial contrastive learning paradigm that automates the distillation of crucial multi-view self-supervised information.
We demonstrate the superiority of our proposed GraphST method in various spatial-temporal prediction tasks on real-life datasets.
arXiv Detail & Related papers (2023-06-19T03:09:35Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
Finding temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning.
We propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet)
SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing.
SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity.
arXiv Detail & Related papers (2023-06-15T07:48:32Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
Graph neural networks have emerged as a leading architecture for many graph-level tasks.
graph pooling is indispensable for obtaining a holistic graph-level representation of the whole graph.
arXiv Detail & Related papers (2022-04-15T04:02:06Z) - Urban Region Profiling via A Multi-Graph Representation Learning
Framework [0.0]
We propose a multi-graph representative learning framework, called Region2Vec, for urban region profiling.
Experiments on real-world datasets show that Region2Vec can be employed in three applications and outperforms all state-of-the-art baselines.
arXiv Detail & Related papers (2022-02-04T11:05:37Z) - Multi-Graph Fusion Networks for Urban Region Embedding [40.97361959702485]
Learning embeddings for urban regions from human mobility data can reveal the functionality of regions, and then enables correlated but distinct tasks such as crime prediction.
We propose multi-graph fusion networks (MGFN) to enable the cross domain prediction tasks.
Experimental results demonstrate that the proposed MGFN outperforms the state-of-the-art methods by up to 12.35%.
arXiv Detail & Related papers (2022-01-24T15:48:50Z) - Group Contrastive Self-Supervised Learning on Graphs [101.45974132613293]
We study self-supervised learning on graphs using contrastive methods.
We argue that contrasting graphs in multiple subspaces enables graph encoders to capture more abundant characteristics.
arXiv Detail & Related papers (2021-07-20T22:09:21Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.