Subsampling, aligning, and averaging to find circular coordinates in recurrent time series
- URL: http://arxiv.org/abs/2412.18515v1
- Date: Tue, 24 Dec 2024 15:52:51 GMT
- Title: Subsampling, aligning, and averaging to find circular coordinates in recurrent time series
- Authors: Andrew J. Blumberg, Mathieu Carrière, Jun Hou Fung, Michael A. Mandell,
- Abstract summary: We introduce a new algorithm for finding robust circular coordinates on data that is expected to exhibit recurrence.
We validate our technique on both synthetic data sets and neuronal activity recordings.
- Score: 3.8214695776749013
- License:
- Abstract: We introduce a new algorithm for finding robust circular coordinates on data that is expected to exhibit recurrence, such as that which appears in neuronal recordings of C. elegans. Techniques exist to create circular coordinates on a simplicial complex from a dimension 1 cohomology class, and these can be applied to the Rips complex of a dataset when it has a prominent class in its dimension 1 cohomology. However, it is known this approach is extremely sensitive to uneven sampling density. Our algorithm comes with a new method to correct for uneven sampling density, adapting our prior work on averaging coordinates in manifold learning. We use rejection sampling to correct for inhomogeneous sampling and then apply Procrustes matching to align and average the subsamples. In addition to providing a more robust coordinate than other approaches, this subsampling and averaging approach has better efficiency. We validate our technique on both synthetic data sets and neuronal activity recordings. Our results reveal a topological model of neuronal trajectories for C. elegans that is constructed from loops in which different regions of the brain state space can be mapped to specific and interpretable macroscopic behaviors in the worm.
Related papers
- Resampling and averaging coordinates on data [1.660242118349614]
We introduce algorithms for robustly computing intrinsic coordinates on point clouds.
We identify a subset of representative embeddings by clustering the collection of candidate coordinates and using shape descriptors from topological data analysis.
The final output is the embedding obtained as an average of the representative embeddings using generalized Procrustes analysis.
arXiv Detail & Related papers (2024-08-02T16:37:33Z) - Circular Clustering with Polar Coordinate Reconstruction [6.598049778463762]
Traditional clustering algorithms are often inadequate due to their limited ability to distinguish differences in the periodic component.
We propose a new analysis framework that utilizes projections onto a cylindrical coordinate system to better represent objects in a polar coordinate system.
Our approach is generally applicable and adaptable and can be incorporated into most state-of-the-art clustering algorithms.
arXiv Detail & Related papers (2023-09-15T20:56:01Z) - Samplet basis pursuit: Multiresolution scattered data approximation with sparsity constraints [0.0]
We consider scattered data approximation in samplet coordinates with $ell_1$-regularization.
By using the Riesz isometry, we embed samplets into reproducing kernel Hilbert spaces.
We argue that the class of signals that are sparse with respect to the embedded samplet basis is considerably larger than the class of signals that are sparse with respect to the basis of kernel translates.
arXiv Detail & Related papers (2023-06-16T21:20:49Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
We introduce a manifold learning-based method for uncertainty quantification (UQ) in describing systems.
The proposed method is able to achieve highly accurate approximations which ultimately lead to the significant acceleration of UQ tasks.
arXiv Detail & Related papers (2021-07-21T00:24:15Z) - SGD with Coordinate Sampling: Theory and Practice [0.0]
MUSKETEER is an adaptive gradient descent algorithm for large scale problems.
It samples the most coordinate coordinates on the noisy gradients and moves along the one direction yielding an important decrease of coordinates.
Numerical experiments on both synthetic and real data examples confirm the effectiveness of MUSKETEER in large scale problems.
arXiv Detail & Related papers (2021-05-25T10:37:50Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies.
We present a number of applications where the use of multiple geometric models improves accuracy.
These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects.
arXiv Detail & Related papers (2021-03-25T14:35:07Z) - Improving Generative Adversarial Networks with Local Coordinate Coding [150.24880482480455]
Generative adversarial networks (GANs) have shown remarkable success in generating realistic data from some predefined prior distribution.
In practice, semantic information might be represented by some latent distribution learned from data.
We propose an LCCGAN model with local coordinate coding (LCC) to improve the performance of generating data.
arXiv Detail & Related papers (2020-07-28T09:17:50Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - Non-Adaptive Adaptive Sampling on Turnstile Streams [57.619901304728366]
We give the first relative-error algorithms for column subset selection, subspace approximation, projective clustering, and volume on turnstile streams that use space sublinear in $n$.
Our adaptive sampling procedure has a number of applications to various data summarization problems that either improve state-of-the-art or have only been previously studied in the more relaxed row-arrival model.
arXiv Detail & Related papers (2020-04-23T05:00:21Z) - Learning to Optimize Non-Rigid Tracking [54.94145312763044]
We employ learnable optimizations to improve robustness and speed up solver convergence.
First, we upgrade the tracking objective by integrating an alignment data term on deep features which are learned end-to-end through CNN.
Second, we bridge the gap between the preconditioning technique and learning method by introducing a ConditionNet which is trained to generate a preconditioner.
arXiv Detail & Related papers (2020-03-27T04:40:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.