Bayesian Optimization of Bilevel Problems
- URL: http://arxiv.org/abs/2412.18518v1
- Date: Tue, 24 Dec 2024 15:55:30 GMT
- Title: Bayesian Optimization of Bilevel Problems
- Authors: Omer Ekmekcioglu, Nursen Aydin, Juergen Branke,
- Abstract summary: This paper focuses on bilevel optimization where both upper-level and lower-level functions are black boxes and expensive to evaluate.
We propose a Bayesian Optimization framework that models the upper and lower-level functions as Gaussian processes over the combined space of upper and lower-level decisions.
Our experimental results demonstrate that the proposed algorithm is highly sample-efficient and outperforms existing methods in finding high-quality solutions.
- Score: 0.0
- License:
- Abstract: Bilevel optimization, a hierarchical mathematical framework where one optimization problem is nested within another, has emerged as a powerful tool for modeling complex decision-making processes in various fields such as economics, engineering, and machine learning. This paper focuses on bilevel optimization where both upper-level and lower-level functions are black boxes and expensive to evaluate. We propose a Bayesian Optimization framework that models the upper and lower-level functions as Gaussian processes over the combined space of upper and lower-level decisions, allowing us to exploit knowledge transfer between different sub-problems. Additionally, we propose a novel acquisition function for this model. Our experimental results demonstrate that the proposed algorithm is highly sample-efficient and outperforms existing methods in finding high-quality solutions.
Related papers
- BILBO: BILevel Bayesian Optimization [36.88993287853141]
Bilevel optimization is characterized by a two-level structure, where the upper-level problem is constrained by optimal lower-level solutions.
We present BILevel Bayesian Optimization (BILBO), a novel algorithm for general bilevel problems with blackbox functions.
arXiv Detail & Related papers (2025-02-04T08:57:47Z) - Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
gradient-based algorithms are widely used in bilevel optimization.
We introduce a without-replacement sampling based algorithm which achieves a faster convergence rate.
We validate our algorithms over both synthetic and real-world applications.
arXiv Detail & Related papers (2024-11-07T17:05:31Z) - Contextual Stochastic Bilevel Optimization [50.36775806399861]
We introduce contextual bilevel optimization (CSBO) -- a bilevel optimization framework with the lower-level problem minimizing an expectation on some contextual information and the upper-level variable.
It is important for applications such as meta-learning, personalized learning, end-to-end learning, and Wasserstein distributionally robustly optimization with side information (WDRO-SI)
arXiv Detail & Related papers (2023-10-27T23:24:37Z) - Effective Bilevel Optimization via Minimax Reformulation [23.5093932552053]
We propose a reformulation of bilevel optimization as a minimax problem.
Under mild conditions, we show these two problems are equivalent.
Our method outperforms state-of-the-art bilevel methods while significantly reducing the computational cost.
arXiv Detail & Related papers (2023-05-22T15:41:33Z) - Efficient Gradient Approximation Method for Constrained Bilevel
Optimization [2.0305676256390934]
Bilevel optimization has been developed with large-scale high-dimensional data.
This paper considers a constrained bilevel problem with convex and non-differentiable approximations.
arXiv Detail & Related papers (2023-02-03T19:34:56Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Bilevel Optimization for Machine Learning: Algorithm Design and
Convergence Analysis [12.680169619392695]
This thesis provides a comprehensive convergence rate analysis for bilevel optimization algorithms.
For the problem-based formulation, we provide a convergence rate analysis for AID- and ITD-based bilevel algorithms.
We then develop acceleration bilevel algorithms, for which we provide shaper convergence analysis with relaxed assumptions.
arXiv Detail & Related papers (2021-07-31T22:05:47Z) - Enhanced Bilevel Optimization via Bregman Distance [104.96004056928474]
We propose a bilevel optimization method based on Bregman Bregman functions.
We also propose an accelerated version of SBiO-BreD method (ASBiO-BreD) by using the variance-reduced technique.
arXiv Detail & Related papers (2021-07-26T16:18:43Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.