BILBO: BILevel Bayesian Optimization
- URL: http://arxiv.org/abs/2502.02121v1
- Date: Tue, 04 Feb 2025 08:57:47 GMT
- Title: BILBO: BILevel Bayesian Optimization
- Authors: Ruth Wan Theng Chew, Quoc Phong Nguyen, Bryan Kian Hsiang Low,
- Abstract summary: Bilevel optimization is characterized by a two-level structure, where the upper-level problem is constrained by optimal lower-level solutions.
We present BILevel Bayesian Optimization (BILBO), a novel algorithm for general bilevel problems with blackbox functions.
- Score: 36.88993287853141
- License:
- Abstract: Bilevel optimization is characterized by a two-level optimization structure, where the upper-level problem is constrained by optimal lower-level solutions, and such structures are prevalent in real-world problems. The constraint by optimal lower-level solutions poses significant challenges, especially in noisy, constrained, and derivative-free settings, as repeating lower-level optimizations is sample inefficient and predicted lower-level solutions may be suboptimal. We present BILevel Bayesian Optimization (BILBO), a novel Bayesian optimization algorithm for general bilevel problems with blackbox functions, which optimizes both upper- and lower-level problems simultaneously, without the repeated lower-level optimization required by existing methods. BILBO samples from confidence-bounds based trusted sets, which bounds the suboptimality on the lower level. Moreover, BILBO selects only one function query per iteration, where the function query selection strategy incorporates the uncertainty of estimated lower-level solutions and includes a conditional reassignment of the query to encourage exploration of the lower-level objective. The performance of BILBO is theoretically guaranteed with a sublinear regret bound for commonly used kernels and is empirically evaluated on several synthetic and real-world problems.
Related papers
- Bayesian Optimization of Bilevel Problems [0.0]
This paper focuses on bilevel optimization where both upper-level and lower-level functions are black boxes and expensive to evaluate.
We propose a Bayesian Optimization framework that models the upper and lower-level functions as Gaussian processes over the combined space of upper and lower-level decisions.
Our experimental results demonstrate that the proposed algorithm is highly sample-efficient and outperforms existing methods in finding high-quality solutions.
arXiv Detail & Related papers (2024-12-24T15:55:30Z) - Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
gradient-based algorithms are widely used in bilevel optimization.
We introduce a without-replacement sampling based algorithm which achieves a faster convergence rate.
We validate our algorithms over both synthetic and real-world applications.
arXiv Detail & Related papers (2024-11-07T17:05:31Z) - Pareto Set Prediction Assisted Bilevel Multi-objective Optimization [2.3293561091456283]
We address problems with multiple objectives (BLMOP) at both levels.
The proposed approach is competitive across a range of problems, including both deceptive and non-deceptive.
arXiv Detail & Related papers (2024-09-05T08:04:11Z) - A Primal-Dual-Assisted Penalty Approach to Bilevel Optimization with Coupled Constraints [66.61399765513383]
We develop a BLOCC algorithm to tackle BiLevel Optimization problems with Coupled Constraints.
We demonstrate its effectiveness on two well-known real-world applications.
arXiv Detail & Related papers (2024-06-14T15:59:36Z) - Contextual Stochastic Bilevel Optimization [50.36775806399861]
We introduce contextual bilevel optimization (CSBO) -- a bilevel optimization framework with the lower-level problem minimizing an expectation on some contextual information and the upper-level variable.
It is important for applications such as meta-learning, personalized learning, end-to-end learning, and Wasserstein distributionally robustly optimization with side information (WDRO-SI)
arXiv Detail & Related papers (2023-10-27T23:24:37Z) - Non-Convex Bilevel Optimization with Time-Varying Objective Functions [57.299128109226025]
We propose an online bilevel optimization where the functions can be time-varying and the agent continuously updates the decisions with online data.
Compared to existing algorithms, SOBOW is computationally efficient and does not need to know previous functions.
We show that SOBOW can achieve a sublinear bilevel local regret under mild conditions.
arXiv Detail & Related papers (2023-08-07T06:27:57Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - Enhanced Bilevel Optimization via Bregman Distance [104.96004056928474]
We propose a bilevel optimization method based on Bregman Bregman functions.
We also propose an accelerated version of SBiO-BreD method (ASBiO-BreD) by using the variance-reduced technique.
arXiv Detail & Related papers (2021-07-26T16:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.