Automated Code Review In Practice
- URL: http://arxiv.org/abs/2412.18531v2
- Date: Sat, 28 Dec 2024 08:16:43 GMT
- Title: Automated Code Review In Practice
- Authors: Umut Cihan, Vahid Haratian, Arda İçöz, Mert Kaan Gül, Ömercan Devran, Emircan Furkan Bayendur, Baykal Mehmet Uçar, Eray Tüzün,
- Abstract summary: Several AI-assisted tools, such as Qodo, GitHub Copilot, and Coderabbit, provide automated reviews using large language models (LLMs)
This study examines the impact of LLM-based automated code review tools in an industrial setting.
- Score: 1.6271516689052665
- License:
- Abstract: Code review is a widespread practice to improve software quality and transfer knowledge. It is often seen as time-consuming due to the need for manual effort and potential delays. Several AI-assisted tools, such as Qodo, GitHub Copilot, and Coderabbit, provide automated reviews using large language models (LLMs). The effects of such tools in the industry are yet to be examined. This study examines the impact of LLM-based automated code review tools in an industrial setting. The study was conducted within a software development environment that adopted an AI-assisted review tool (based on open-source Qodo PR Agent). Around 238 practitioners across ten projects had access to the tool. We focused on three projects with 4,335 pull requests, 1,568 of which underwent automated reviews. Data collection comprised three sources: (1) a quantitative analysis of pull request data, including comment labels indicating whether developers acted on the automated comments, (2) surveys sent to developers regarding their experience with reviews on individual pull requests, and (3) a broader survey of 22 practitioners capturing their general opinions on automated reviews. 73.8% of automated comments were resolved. However, the average pull request closure duration increased from five hours 52 minutes to eight hours 20 minutes, with varying trends across projects. Most practitioners reported a minor improvement in code quality due to automated reviews. The LLM-based tool proved useful in software development, enhancing bug detection, increasing awareness of code quality, and promoting best practices. However, it also led to longer pull request closure times and introduced drawbacks like faulty reviews, unnecessary corrections, and irrelevant comments.
Related papers
- Deep Learning-based Code Reviews: A Paradigm Shift or a Double-Edged Sword? [14.970843824847956]
We run a controlled experiment with 29 experts who reviewed different programs with/without the support of an automatically generated code review.
We show that reviewers consider valid most of the issues automatically identified by the LLM and that the availability of an automated review as a starting point strongly influences their behavior.
The reviewers who started from an automated review identified a higher number of low-severity issues while, however, not identifying more high-severity issues as compared to a completely manual process.
arXiv Detail & Related papers (2024-11-18T09:24:01Z) - Understanding Code Understandability Improvements in Code Reviews [79.16476505761582]
We analyzed 2,401 code review comments from Java open-source projects on GitHub.
83.9% of suggestions for improvement were accepted and integrated, with fewer than 1% later reverted.
arXiv Detail & Related papers (2024-10-29T12:21:23Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
We present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework.
Codev-Agent is an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage.
arXiv Detail & Related papers (2024-10-02T09:11:10Z) - Predicting Expert Evaluations in Software Code Reviews [8.012861163935904]
This paper presents an algorithmic model that automates aspects of code review typically avoided due to their complexity or subjectivity.
Instead of replacing manual reviews, our model adds insights that help reviewers focus on more impactful tasks.
arXiv Detail & Related papers (2024-09-23T16:01:52Z) - Leveraging Reviewer Experience in Code Review Comment Generation [11.224317228559038]
We train deep learning models to imitate human reviewers in providing natural language code reviews.
The quality of the model generated reviews remain sub-optimal due to the quality of the open-source code review data used in model training.
We propose a suite of experience-aware training methods that utilise the reviewers' past authoring and reviewing experiences as signals for review quality.
arXiv Detail & Related papers (2024-09-17T07:52:50Z) - NExT: Teaching Large Language Models to Reason about Code Execution [50.93581376646064]
Large language models (LLMs) of code are typically trained on the surface textual form of programs.
We propose NExT, a method to teach LLMs to inspect the execution traces of programs and reason about their run-time behavior.
arXiv Detail & Related papers (2024-04-23T01:46:32Z) - Improving Automated Code Reviews: Learning from Experience [12.573740138977065]
This study investigates whether higher-quality reviews can be generated from automated code review models.
We find that experience-aware oversampling can increase the correctness, level of information, and meaningfulness of reviews.
arXiv Detail & Related papers (2024-02-06T07:48:22Z) - Code Review Automation: Strengths and Weaknesses of the State of the Art [14.313783664862923]
Three code review automation techniques tend to succeed or fail in two tasks described in this paper.
The study has a strong qualitative focus, with 105 man-hours of manual inspection invested in analyzing correct and wrong predictions.
arXiv Detail & Related papers (2024-01-10T13:00:18Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssue is a benchmark for realistic bug localization.
We provide a general benchmark with a diversity of real and synthetic Java bugs.
We hope to advance the state of the art in bug localization, in turn improving APR performance and increasing its applicability to the modern development cycle.
arXiv Detail & Related papers (2022-07-21T20:17:53Z) - Automating App Review Response Generation [67.58267006314415]
We propose a novel approach RRGen that automatically generates review responses by learning knowledge relations between reviews and their responses.
Experiments on 58 apps and 309,246 review-response pairs highlight that RRGen outperforms the baselines by at least 67.4% in terms of BLEU-4.
arXiv Detail & Related papers (2020-02-10T05:23:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.