Bugdar: AI-Augmented Secure Code Review for GitHub Pull Requests
- URL: http://arxiv.org/abs/2503.17302v1
- Date: Fri, 21 Mar 2025 16:52:03 GMT
- Title: Bugdar: AI-Augmented Secure Code Review for GitHub Pull Requests
- Authors: John Naulty, Eason Chen, Joy Wang, George Digkas, Kostas Chalkias,
- Abstract summary: Bugdar is an AI-augmented code review system that integrates seamlessly into GitHub pull requests.<n>It provides near real-time, context-aware vulnerability analysis.<n>Bugdar processes an average of 56.4 seconds per pull request or 30 lines of code per second.
- Score: 9.636894100495505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As software systems grow increasingly complex, ensuring security during development poses significant challenges. Traditional manual code audits are often expensive, time-intensive, and ill-suited for fast-paced workflows, while automated tools frequently suffer from high false-positive rates, limiting their reliability. To address these issues, we introduce Bugdar, an AI-augmented code review system that integrates seamlessly into GitHub pull requests, providing near real-time, context-aware vulnerability analysis. Bugdar leverages fine-tunable Large Language Models (LLMs) and Retrieval Augmented Generation (RAGs) to deliver project-specific, actionable feedback that aligns with each codebase's unique requirements and developer practices. Supporting multiple programming languages, including Solidity, Move, Rust, and Python, Bugdar demonstrates exceptional efficiency, processing an average of 56.4 seconds per pull request or 30 lines of code per second. This is significantly faster than manual reviews, which could take hours per pull request. By facilitating a proactive approach to secure coding, Bugdar reduces the reliance on manual reviews, accelerates development cycles, and enhances the security posture of software systems without compromising productivity.
Related papers
- Automated Code Review In Practice [1.6271516689052665]
Several AI-assisted tools, such as Qodo, GitHub Copilot, and Coderabbit, provide automated reviews using large language models (LLMs)
This study examines the impact of LLM-based automated code review tools in an industrial setting.
arXiv Detail & Related papers (2024-12-24T16:24:45Z) - Seeker: Towards Exception Safety Code Generation with Intermediate Language Agents Framework [58.36391985790157]
In real world software development, improper or missing exception handling can severely impact the robustness and reliability of code.
We explore the use of large language models (LLMs) to improve exception handling in code.
We propose Seeker, a multi-agent framework inspired by expert developer strategies for exception handling.
arXiv Detail & Related papers (2024-12-16T12:35:29Z) - RedCode: Risky Code Execution and Generation Benchmark for Code Agents [50.81206098588923]
RedCode is a benchmark for risky code execution and generation.
RedCode-Exec provides challenging prompts that could lead to risky code execution.
RedCode-Gen provides 160 prompts with function signatures and docstrings as input to assess whether code agents will follow instructions.
arXiv Detail & Related papers (2024-11-12T13:30:06Z) - Understanding Code Understandability Improvements in Code Reviews [79.16476505761582]
We analyzed 2,401 code review comments from Java open-source projects on GitHub.
83.9% of suggestions for improvement were accepted and integrated, with fewer than 1% later reverted.
arXiv Detail & Related papers (2024-10-29T12:21:23Z) - Evaluating Software Development Agents: Patch Patterns, Code Quality, and Issue Complexity in Real-World GitHub Scenarios [13.949319911378826]
This study evaluated 4,892 patches from 10 top-ranked agents on 500 real-world GitHub issues.<n>No single agent dominated, with 170 issues unresolved, indicating room for improvement.<n>Most agents maintained code reliability and security, avoiding new bugs or vulnerabilities.<n>Some agents increased code complexity, many reduced code duplication and minimized code smells.
arXiv Detail & Related papers (2024-10-16T11:33:57Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
We present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework.
Codev-Agent is an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage.
arXiv Detail & Related papers (2024-10-02T09:11:10Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
This research proposal aims to explore innovative solutions by focusing on the deployment of agents powered by Large Language Models (LLMs)
The iterative nature of agents, which allows for continuous learning and adaptation, can help surpass common challenges in code generation.
We aim to use the iterative feedback in these systems to further fine-tune the LLMs underlying the agents, becoming better aligned to the task of automated software improvement.
arXiv Detail & Related papers (2024-06-24T15:45:22Z) - LLM-Powered Code Vulnerability Repair with Reinforcement Learning and
Semantic Reward [3.729516018513228]
We introduce a multipurpose code vulnerability analysis system textttSecRepair, powered by a large language model, CodeGen2.
Inspired by how humans fix code issues, we propose an instruction-based dataset suitable for vulnerability analysis with LLMs.
We identify zero-day and N-day vulnerabilities in 6 Open Source IoT Operating Systems on GitHub.
arXiv Detail & Related papers (2024-01-07T02:46:39Z) - Using AI/ML to Find and Remediate Enterprise Secrets in Code & Document
Sharing Platforms [2.9248916859490173]
We introduce a new challenge to the software development community: 1) leveraging AI to accurately detect and flag up secrets in code and on popular document sharing platforms.
We introduce two baseline AI models that have good detection performance and propose an automatic mechanism for remediating secrets found in code.
arXiv Detail & Related papers (2024-01-03T14:15:25Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z) - Predicting Vulnerability In Large Codebases With Deep Code
Representation [6.357681017646283]
Software engineers write code for various modules, quite often, various types of errors get introduced.
Same or similar issues/bugs, which were fixed in the past (although in different modules), tend to get introduced in production code again.
We developed a novel AI-based system which uses the deep representation of Abstract Syntax Tree (AST) created from the source code and also the active feedback loop.
arXiv Detail & Related papers (2020-04-24T13:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.