論文の概要: Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation
- arxiv url: http://arxiv.org/abs/2412.18537v2
- Date: Mon, 06 Jan 2025 07:42:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:03:36.560124
- Title: Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation
- Title(参考訳): 適応型多視点検索による知識グラフ質問応答に対する大規模言語モデルの有用性
- Authors: Derong Xu, Xinhang Li, Ziheng Zhang, Zhenxi Lin, Zhihong Zhu, Zhi Zheng, Xian Wu, Xiangyu Zhao, Tong Xu, Enhong Chen,
- Abstract要約: 本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
- 参考スコア(独自算出の注目度): 81.18701211912779
- License:
- Abstract: Large Language Models (LLMs) demonstrate remarkable capabilities, yet struggle with hallucination and outdated knowledge when tasked with complex knowledge reasoning, resulting in factually incorrect outputs. Previous studies have attempted to mitigate it by retrieving factual knowledge from large-scale knowledge graphs (KGs) to assist LLMs in logical reasoning and prediction of answers. However, this kind of approach often introduces noise and irrelevant data, especially in situations with extensive context from multiple knowledge aspects. In this way, LLM attention can be potentially mislead from question and relevant information. In our study, we introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework. This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings. The Amar framework comprises two key sub-components: 1) a self-alignment module that aligns commonalities among entities, relations, and subgraphs to enhance retrieved text, thereby reducing noise interference; 2) a relevance gating module that employs a soft gate to learn the relevance score between question and multi-aspect retrieved data, to determine which information should be used to enhance LLMs' output, or even filtered altogether. Our method has achieved state-of-the-art performance on two common datasets, WebQSP and CWQ, showing a 1.9\% improvement in accuracy over its best competitor and a 6.6\% improvement in logical form generation over a method that directly uses retrieved text as context prompts. These results demonstrate the effectiveness of Amar in improving the reasoning of LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は目覚ましい能力を示すが、複雑な知識推論をタスクする場合、幻覚や時代遅れの知識に悩まされ、結果として事実的に誤った出力となる。
これまでの研究では、LLMの論理的推論や解答の予測を支援するために、大規模知識グラフ(KG)から事実知識を取得することで、これを緩和しようと試みてきた。
しかし、この種のアプローチはしばしばノイズや無関係なデータを導入し、特に複数の知識の側面から広い文脈の状況においてである。
このようにして、LCMの注意は、質問や関連する情報から誤解を招く可能性がある。
そこで本研究では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索(Adaptive Multi-Aspect Retrieval-augmented)を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
Amarフレームワークは2つの重要なサブコンポーネントから構成されている。
1 エンティティ、関係書及びサブグラフの共通性を整合させ、検索されたテキストを増強し、ノイズの干渉を低減する自己調整モジュール
2) ソフトゲートを用いて質問とマルチアスペクト検索データ間の関連点を学習し, LLMの出力を高めるためにどの情報を使用するべきか, あるいは完全にフィルタリングするかを判断する関連ゲーティングモジュール。
提案手法は,WebQSP と CWQ の2つの共通データセット上での最先端性能を実現し,検索したテキストを直接コンテキストプロンプトとして利用する手法よりも1.9 %の精度向上と6.6 %の論理形式生成を実現している。
これらの結果は,LLMの推論を改善する上でのAmarの有効性を示す。
関連論文リスト
- Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models [33.662269036173456]
大規模言語モデル(LLM)は、関連する知識の欠如により、現実世界の応用において幻覚に悩まされることがある。
KGQA(Knowledge Graph Question Answering)は、統合のための重要な手掛かりとなる。
LLMの対話型学習機能を活用してグラフ上での推論と議論を行う対話型KGQAフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-05T01:11:58Z) - Enhancing Contextual Understanding in Large Language Models through Contrastive Decoding [9.2433070542025]
大規模言語モデル(LLM)は、テキスト生成時に入力コンテキストを不適切に統合する傾向がある。
本稿では, 逆無関係なパスを負のサンプルとして, コントラストデコーディングを統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-04T20:38:41Z) - Robust and Scalable Model Editing for Large Language Models [75.95623066605259]
LLM編集のスケーラビリティと堅牢性を向上させるため,EREN(Reading Notesによる編集モデル)を提案する。
既存の技術とは異なり、複数の編集から知識を統合することができ、構文的に類似しているが意味的に無関係な入力に正しく反応する。
論文 参考訳(メタデータ) (2024-03-26T06:57:23Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
本稿では,知識グラフに基づく拡張と合わせて,グラフ駆動型コンテキスト検索を組み合わせた新しいフレームワークを提案する。
我々は,様々なパラメータサイズを持つ大規模言語モデル(LLM)の実験を行い,知識の基盤化能力を評価し,オープンな質問に対する回答の事実的正確性を決定する。
われわれの方法であるGraphContextGenは、テキストベースの検索システムよりも一貫して優れており、その堅牢性と多くのユースケースへの適応性を実証している。
論文 参考訳(メタデータ) (2024-01-23T11:25:34Z) - Blinded by Generated Contexts: How Language Models Merge Generated and Retrieved Contexts When Knowledge Conflicts? [45.233517779029334]
応答が生成されたコンテキストと検索されたコンテキストに関連付けられているかどうかを識別する。
実験では、誤った情報を提供する場合でも、生成されたコンテキストを優先する複数のLSMにおいて、重大なバイアスが示される。
論文 参考訳(メタデータ) (2024-01-22T12:54:04Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z) - MGA-VQA: Multi-Granularity Alignment for Visual Question Answering [75.55108621064726]
視覚的な質問に答えることを学ぶことは、マルチモーダル入力が2つの特徴空間内にあるため、難しい作業である。
視覚質問応答タスク(MGA-VQA)のための多言語アライメントアーキテクチャを提案する。
我々のモデルはアライメントを異なるレベルに分割し、追加のデータやアノテーションを必要とせずにより良い相関関係を学習します。
論文 参考訳(メタデータ) (2022-01-25T22:30:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。