Extendible quantum measurements and limitations on classical communication
- URL: http://arxiv.org/abs/2412.18556v1
- Date: Tue, 24 Dec 2024 17:12:45 GMT
- Title: Extendible quantum measurements and limitations on classical communication
- Authors: Vishal Singh, Theshani Nuradha, Mark M. Wilde,
- Abstract summary: Unextendibility of quantum states and channels is inextricably linked to the no-cloning theorem of quantum mechanics.
We define $k$-extendible measurements for every integer $kge 2$.
- Score: 4.7846581583644525
- License:
- Abstract: Unextendibility of quantum states and channels is inextricably linked to the no-cloning theorem of quantum mechanics, it has played an important role in understanding and quantifying entanglement, and more recently it has found applications in providing limitations on quantum error correction and entanglement distillation. Here we generalize the framework of unextendibility to quantum measurements and define $k$-extendible measurements for every integer $k\ge 2$. Our definition provides a hierarchy of semidefinite constraints that specify a set of measurements containing every measurement that can be realized by local operations and one-way classical communication. Furthermore, the set of $k$-extendible measurements converges to the set of measurements that can be realized by local operations and one-way classical communication as $k\to \infty$. To illustrate the utility of $k$-extendible measurements, we establish a semidefinite programming upper bound on the one-shot classical capacity of a channel, which outperforms the best known efficiently computable bound from [Matthews and Wehner, IEEE Trans. Inf. Theory 60, pp. 7317-7329 (2014)] and also leads to efficiently computable upper bounds on the $n$-shot classical capacity of a channel.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Asymptotic implementation of multipartite quantum channels and other quantum instruments using local operations and classical communication [0.0]
We prove that a quantum channel on a multipartite system may be approximated arbitrarily using local operations and classical communication (LOCC)
We illustrate these results by a detailed analysis of a quantum instrument that is known not to be implementable by LOCC.
arXiv Detail & Related papers (2023-10-09T02:44:28Z) - Optimal Local Measurements in Many-body Quantum Metrology [3.245777276920855]
We propose a method dubbed as the "iterative matrix partition" approach to elucidate the underlying structures of optimal local measurements.
We find that exact saturation is possible for all two-qubit pure states, but it is generically restrictive for multi-qubit pure states.
We demonstrate that the qCRB can be universally saturated in an approximate manner through adaptive coherent controls.
arXiv Detail & Related papers (2023-09-30T07:34:31Z) - Quantum-Enhanced Parameter Estimation Without Entanglement [0.0]
We construct analogues of Dicke and GHZ states on a single $N+1$ dimensional qudit.
We estimate the achievable precision, suggesting a close relationship between non-classical states and metrological power of qudits.
arXiv Detail & Related papers (2023-09-25T17:57:45Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Beating the classical phase precision limit using a quantum neuromorphic
platform [2.4937400423177767]
Phase measurement constitutes a key task in many fields of science, both in the classical and quantum regime.
Here we theoretically model the use of a quantum network, composed of a randomly coupled set of two-level systems, as a processing device for phase measurement.
We demonstrate phase precision scaling following the standard quantum limit, the Heisenberg limit, and beyond.
arXiv Detail & Related papers (2021-10-14T16:29:02Z) - Incompatibility measures in multi-parameter quantum estimation under
hierarchical quantum measurements [4.980960723762946]
We show an approach to study the incompatibility under general $p$-local measurements.
We demonstrate the power of the approach by presenting a hierarchy of analytical bounds on the tradeoff.
arXiv Detail & Related papers (2021-09-13T09:33:47Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.