Quantum-Enhanced Parameter Estimation Without Entanglement
- URL: http://arxiv.org/abs/2309.14333v1
- Date: Mon, 25 Sep 2023 17:57:45 GMT
- Title: Quantum-Enhanced Parameter Estimation Without Entanglement
- Authors: Pragati Gupta
- Abstract summary: We construct analogues of Dicke and GHZ states on a single $N+1$ dimensional qudit.
We estimate the achievable precision, suggesting a close relationship between non-classical states and metrological power of qudits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement is generally considered necessary for achieving the Heisenberg
limit in quantum metrology. We construct analogues of Dicke and GHZ states on a
single $N+1$ dimensional qudit that achieve precision equivalent to
symmetrically entangled states on $N$ qubits, showing that entanglement is not
necessary for going beyond the standard quantum limit. We define a measure of
non-classicality based on quantum Fisher information and estimate the
achievable precision, suggesting a close relationship between non-classical
states and metrological power of qudits. Our work offers an exponential
reduction in the physical resources required for quantum-enhanced parameter
estimation, making it accessible on any quantum system with a high-dimensional
Hilbert space.
Related papers
- Absolute dimensionality of quantum ensembles [41.94295877935867]
The dimension of a quantum state is traditionally seen as the number of superposed distinguishable states in a given basis.
We propose an absolute, i.e.basis-independent, notion of dimensionality for ensembles of quantum states.
arXiv Detail & Related papers (2024-09-03T09:54:15Z) - Detection of mode-intrinsic quantum entanglement [0.0]
We propose a witness to detect a strong form of entanglement that only non-Gaussian states possess.
The strength of our witness is two-fold: it only requires measurements in one basis to check entanglement in any arbitrary mode basis.
arXiv Detail & Related papers (2024-07-25T15:01:47Z) - One-Shot Min-Entropy Calculation And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.
It gives an alternative tight finite-data analysis for the well-known BB84 quantum key distribution protocol.
It provides a security proof for a novel source-independent continuous-variable quantum random number generation protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - Strong quantum metrological limit from many-body physics [0.0]
We find a universal speed limit set by the Lieb-Robinson light cone for the quantum Fisher information growth to characterize the metrological potential of quantum resource states.
It reveals a fundamental constraint for reaching the Heisenberg limit in a generic many-body lattice system with bounded one-site energy.
arXiv Detail & Related papers (2023-01-28T07:08:35Z) - Approximation of the Nearest Classical-Classical State to a Quantum
State [0.0]
A revolutionary step in computation is driven by quantumness or quantum correlations, which are permanent in entanglements but often in separable states.
The exact quantification of quantumness is an NP-hard problem; thus, we consider alternative approaches to approximate it.
We show that the objective value decreases along the flow by proofs and numerical results.
arXiv Detail & Related papers (2023-01-23T08:26:17Z) - Entanglement and Quantum Correlation Measures from a Minimum Distance
Principle [0.0]
Entanglement, and quantum correlation, are precious resources for quantum technologies implementation based on quantum information science.
We derive an explicit measure able to quantify the degree of quantum correlation for pure or mixed multipartite states.
We prove that our entanglement measure is textitfaithful in the sense that it vanishes only on the set of separable states.
arXiv Detail & Related papers (2022-05-14T22:18:48Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - High-accuracy adaptive quantum tomography for high-dimensional quantum
systems [0.0]
We introduce an adaptive tomographic method that is characterized by a precision that is better than half that of the Gill-Massar bound for any finite dimension.
We demonstrate the high-accuracy of our method by estimating the state of 10-dimensional quantum systems.
arXiv Detail & Related papers (2020-09-10T11:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.