論文の概要: Efficient Aircraft Design Optimization Using Multi-Fidelity Models and Multi-fidelity Physics Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2412.18564v1
- Date: Tue, 24 Dec 2024 17:36:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:53:49.420899
- Title: Efficient Aircraft Design Optimization Using Multi-Fidelity Models and Multi-fidelity Physics Informed Neural Networks
- Title(参考訳): 多忠実度モデルと多忠実度物理インフォームドニューラルネットワークを用いた効率的な航空機設計最適化
- Authors: Apurba Sarker,
- Abstract要約: 本研究では,サロゲートモデル,リダクションオーダーモデル(ROM),マルチファイダリティ機械学習技術など,高度な手法について検討する。
概念実証タスクを通じて、低忠実度シミュレーションから高忠実度結果を予測する能力を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Aircraft design optimization traditionally relies on computationally expensive simulation techniques such as Finite Element Method (FEM) and Finite Volume Method (FVM), which, while accurate, can significantly slow down the design iteration process. The challenge lies in reducing the computational complexity while maintaining high accuracy for quick evaluations of multiple design alternatives. This research explores advanced methods, including surrogate models, reduced-order models (ROM), and multi-fidelity machine learning techniques, to achieve more efficient aircraft design evaluations. Specifically, the study investigates the application of Multi-fidelity Physics-Informed Neural Networks (MPINN) and autoencoders for manifold alignment, alongside the potential of Generative Adversarial Networks (GANs) for refining design geometries. Through a proof-of-concept task, the research demonstrates the ability to predict high-fidelity results from low-fidelity simulations, offering a path toward faster and more cost effective aircraft design iterations.
- Abstract(参考訳): 航空機設計の最適化は伝統的に、有限要素法 (FEM) や有限体積法 (FVM) のような計算コストのかかるシミュレーション技術に頼っている。
課題は、複数の設計代替品の迅速な評価のために高い精度を維持しながら、計算の複雑さを減らすことである。
本研究は、より効率的な航空機設計評価を実現するために、代理モデル、低次モデル(ROM)、多忠実機械学習技術などの先進的な手法を探索する。
具体的には,多要素物理インフォームドニューラルネットワーク(MPINN)とオートエンコーダの多様体アライメントに適用し,GAN(Generative Adversarial Networks)による設計ジオメトリの精製の可能性について検討した。
概念実証タスクを通じて、低忠実度シミュレーションから高忠実度結果を予測する能力を示し、より高速でよりコストのかかる航空機設計イテレーションへの道筋を提供する。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Vehicle Suspension Recommendation System: Multi-Fidelity Neural Network-based Mechanism Design Optimization [4.038368925548051]
自動車のサスペンションは運転性能と乗り心地を改善するように設計されているが、環境によって異なる種類が利用できる。
従来の設計プロセスは多段階であり、設計候補の数を徐々に減らし、目標性能を満たすためにコスト分析を行う。
近年、AIモデルはFAAの計算コストの削減に利用されている。
論文 参考訳(メタデータ) (2024-10-03T23:54:03Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - Diffusion Generative Inverse Design [28.04683283070957]
逆設計(英: inverse design)とは、目的関数の入力を最適化し、目的の結果を導出する問題を指す。
学習グラフニューラルネットワーク(GNN)の最近の進歩は、シミュレーション力学の正確で効率的で微分可能な推定に利用することができる。
本稿では, 分散拡散モデルを用いて, 逆設計問題の解法を効率的に行う方法を示し, より効率的な粒子サンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-05T08:32:07Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Physical Design using Differentiable Learned Simulators [9.380022457753938]
逆設計では、学習したフォワードシミュレータは勾配に基づく設計最適化と組み合わせられる。
この枠組みは数百歩の軌跡を伝播することで高品質な設計を行う。
この結果から,機械学習をベースとしたシミュレータは,いくつかの課題があるにもかかわらず,汎用設計の最適化をサポートできる段階まで成熟していることが示唆された。
論文 参考訳(メタデータ) (2022-02-01T19:56:39Z) - Inverse deep learning methods and benchmarks for artificial
electromagnetic material design [8.47539037890124]
本稿では,AEM設計のためのディープラーニング逆法および非可逆および条件付き可逆ニューラルネットワークについて調査する。
提案手法は繰り返しシミュレーションの制約と容易に統合された計量によって導かれる。
問題がますます悪化するにつれて、境界損失(NA)を伴うニューラルアドジョイントがより高速に解を生成することが示される。
論文 参考訳(メタデータ) (2021-12-19T20:44:53Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。