論文の概要: LatentCRF: Continuous CRF for Efficient Latent Diffusion
- arxiv url: http://arxiv.org/abs/2412.18596v1
- Date: Tue, 24 Dec 2024 18:51:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:54:49.396043
- Title: LatentCRF: Continuous CRF for Efficient Latent Diffusion
- Title(参考訳): LatentCRF: 効率的な潜伏拡散のための連続CRF
- Authors: Kanchana Ranasinghe, Sadeep Jayasumana, Andreas Veit, Ayan Chakrabarti, Daniel Glasner, Michael S Ryoo, Srikumar Ramalingam, Sanjiv Kumar,
- Abstract要約: 本稿では,ニューラルネットワーク層として実装された連続条件ランダムフィールド(CRF)モデルであるLatentCRFを紹介する。
ラテントCRFは、ラテント拡散モデルにおける潜在ベクトル間の空間的および意味的関係をモデル化する。
LDMと比較して画像品質や多様性を損なうことなく,推測効率を33%向上させる。
- 参考スコア(独自算出の注目度): 63.994037257284205
- License:
- Abstract: Latent Diffusion Models (LDMs) produce high-quality, photo-realistic images, however, the latency incurred by multiple costly inference iterations can restrict their applicability. We introduce LatentCRF, a continuous Conditional Random Field (CRF) model, implemented as a neural network layer, that models the spatial and semantic relationships among the latent vectors in the LDM. By replacing some of the computationally-intensive LDM inference iterations with our lightweight LatentCRF, we achieve a superior balance between quality, speed and diversity. We increase inference efficiency by 33% with no loss in image quality or diversity compared to the full LDM. LatentCRF is an easy add-on, which does not require modifying the LDM.
- Abstract(参考訳): 遅延拡散モデル (LDMs) は高画質のフォトリアリスティック画像を生成するが、複数のコストのかかる推論繰り返しによって生じる遅延は適用性を制限することができる。
ニューラルネットワーク層として実装された連続条件ランダムフィールド(CRF)モデルであるLatentCRFを導入し,LDM内の潜伏ベクトル間の空間的および意味的関係をモデル化する。
計算集約的な LDM 推論のイテレーションを軽量な LatentCRF に置き換えることで,品質,速度,多様性のバランスが向上する。
LDMと比較して画像品質や多様性を損なうことなく,推測効率を33%向上させる。
LatentCRFは簡単なアドオンであり、LCMを変更する必要はない。
関連論文リスト
- Boosting Latent Diffusion with Perceptual Objectives [29.107038084215514]
遅延拡散モデル (LDMs) パワー・オブ・ザ・アート高分解能画像モデル。
我々は,遅延知覚損失(LPL)を定義するためにデコーダの内部的特徴を活用することを提案する。
この損失により、モデルはよりシャープでリアルなイメージを作成することができる。
論文 参考訳(メタデータ) (2024-11-06T16:28:21Z) - A Flow-based Truncated Denoising Diffusion Model for Super-resolution Magnetic Resonance Spectroscopic Imaging [34.32290273033808]
本研究は,超高分解能MRSIのためのフローベースTrncated Denoising Diffusion Modelを導入する。
拡散鎖を切断することで拡散過程を短縮し, 正規化フローベースネットワークを用いて切断工程を推定する。
FTDDMは既存の生成モデルよりも優れており、サンプリングプロセスを9倍以上高速化している。
論文 参考訳(メタデータ) (2024-10-25T03:42:35Z) - RCDM: Enabling Robustness for Conditional Diffusion Model [2.4915590770454035]
条件拡散モデル(CDM)は、より多くの制御を提供することで標準拡散モデルを強化する。
CDMの逆過程における不正確な条件入力は、ニューラルネットワークの固定エラーを生じさせるのが容易である。
本稿では,ロバスト条件拡散モデル(RCDM)を提案する。
論文 参考訳(メタデータ) (2024-08-05T13:12:57Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
複雑な多段階拡散モデルを1段階条件付きGAN学生モデルに蒸留する。
E-LatentLPIPSは,拡散モデルの潜在空間で直接動作する知覚的損失である。
我々は, 最先端の1ステップ拡散蒸留モデルよりも優れた1ステップ発生器を実証した。
論文 参考訳(メタデータ) (2024-05-09T17:59:40Z) - LD-Pruner: Efficient Pruning of Latent Diffusion Models using Task-Agnostic Insights [2.8461446020965435]
本稿では,遅延拡散モデル圧縮のための新しい性能保存型構造化プルーニング手法であるLD-Prunerを紹介する。
我々は,テキスト・トゥ・イメージ(T2I)生成,無条件画像生成(UIG),無条件音声生成(UAG)の3つのタスクに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-04-18T06:35:37Z) - DiSR-NeRF: Diffusion-Guided View-Consistent Super-Resolution NeRF [50.458896463542494]
DiSR-NeRFは、ビュー一貫性を持つ超解像(SR)NeRFのための拡散誘導フレームワークである。
我々は,NeRFの固有多視点整合性により不整合問題を緩和するイテレーティブ3Dシンクロナイゼーション(I3DS)を提案する。
論文 参考訳(メタデータ) (2024-04-01T03:06:23Z) - Boosting Latent Diffusion with Flow Matching [22.68317748373856]
フローマッチングは、高速なトレーニングと推論の相補的な特徴から魅力的なアプローチであるが、多種多様な合成は少ない。
凍結拡散モデルと畳み込みデコーダのフローマッチングを導入することにより,高分解能画像合成が可能となることを示す。
最先端の高解像度画像合成は、最小の計算コストで10242ドルのピクセルで達成される。
論文 参考訳(メタデータ) (2023-12-12T15:30:24Z) - Latent Consistency Models: Synthesizing High-Resolution Images with
Few-Step Inference [60.32804641276217]
本稿では,LCM(Latent Consistency Models)を提案する。
高品質の768 x 768 24-step LCMは、トレーニングに32A100 GPU時間しかかからない。
また,画像データセットの微調整に適した新しいLCM法であるLCF(Latent Consistency Fine-tuning)についても紹介する。
論文 参考訳(メタデータ) (2023-10-06T17:11:58Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Diffusion Probabilistic Model Made Slim [128.2227518929644]
軽量画像合成のためのスリム拡散確率モデル(DPM)のカスタマイズ設計を提案する。
一連の条件および非条件画像生成タスクにおける遅延拡散モデルと比較して,計算複雑性を8-18倍に削減する。
論文 参考訳(メタデータ) (2022-11-27T16:27:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。