STITCH: Surface reconstrucTion using Implicit neural representations with Topology Constraints and persistent Homology
- URL: http://arxiv.org/abs/2412.18696v2
- Date: Thu, 09 Jan 2025 03:39:37 GMT
- Title: STITCH: Surface reconstrucTion using Implicit neural representations with Topology Constraints and persistent Homology
- Authors: Anushrut Jignasu, Ethan Herron, Zhanhong Jiang, Soumik Sarkar, Chinmay Hegde, Baskar Ganapathysubramanian, Aditya Balu, Adarsh Krishnamurthy,
- Abstract summary: We present STITCH, a novel approach for neural implicit surface reconstruction of a sparse and irregularly spaced point cloud.
We develop a new differentiable framework based on persistent homology to formulate topological loss terms that enforce the prior of a single 2-manifold object.
- Score: 23.70495314317551
- License:
- Abstract: We present STITCH, a novel approach for neural implicit surface reconstruction of a sparse and irregularly spaced point cloud while enforcing topological constraints (such as having a single connected component). We develop a new differentiable framework based on persistent homology to formulate topological loss terms that enforce the prior of a single 2-manifold object. Our method demonstrates excellent performance in preserving the topology of complex 3D geometries, evident through both visual and empirical comparisons. We supplement this with a theoretical analysis, and provably show that optimizing the loss with stochastic (sub)gradient descent leads to convergence and enables reconstructing shapes with a single connected component. Our approach showcases the integration of differentiable topological data analysis tools for implicit surface reconstruction.
Related papers
- Flexible Mesh Segmentation via Reeb Graph Representation of Geometrical and Topological Features [0.0]
This paper presents a new mesh segmentation method that integrates geometrical and topological features through a flexible Reeb graph representation.
The algorithm consists of three phases: construction of the Reeb graph using the improved topological skeleton approach, topological simplification of the graph by cancelling critical points while preserving essential features, and generation of contiguous segments via an adaptive region-growth process.
arXiv Detail & Related papers (2024-12-05T23:04:45Z) - Differentiable Topology Estimating from Curvatures for 3D Shapes [5.122262236258208]
This paper introduces a novel, differentiable algorithm tailored to accurately estimate the global topology of 3D shapes.
It ensures high accuracy, efficiency, and instant computation with GPU compatibility.
Experimental results demonstrate the method's superior performance across various datasets.
arXiv Detail & Related papers (2024-11-28T17:14:35Z) - Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
Relative representations are an established approach to zero-shot model stitching.
We introduce a normalization procedure in the relative transformation, resulting in invariance to non-isotropic rescalings and permutations.
Second, we propose to deploy topological densification when fine-tuning relative representations, a topological regularization loss encouraging clustering within classes.
arXiv Detail & Related papers (2024-09-17T08:09:22Z) - Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape
Reconstruction from Point Clouds [53.02191521770926]
We introduce Neural Poisson Surface Reconstruction (nPSR), an architecture for shape reconstruction that addresses the challenge of recovering 3D shapes from points.
nPSR exhibits two main advantages: First, it enables efficient training on low-resolution data while achieving comparable performance at high-resolution evaluation.
Overall, the neural Poisson surface reconstruction not only improves upon the limitations of classical deep neural networks in shape reconstruction but also achieves superior results in terms of reconstruction quality, running time, and resolution agnosticism.
arXiv Detail & Related papers (2023-08-03T13:56:07Z) - Hybrid-CSR: Coupling Explicit and Implicit Shape Representation for
Cortical Surface Reconstruction [28.31844964164312]
Hybrid-CSR is a geometric deep-learning model that combines explicit and implicit shape representations for cortical surface reconstruction.
Our method unifies explicit (oriented point clouds) and implicit (indicator function) cortical surface reconstruction.
arXiv Detail & Related papers (2023-07-23T11:32:14Z) - Neural Template: Topology-aware Reconstruction and Disentangled
Generation of 3D Meshes [52.038346313823524]
This paper introduces a novel framework called DTNet for 3D mesh reconstruction and generation via Disentangled Topology.
Our method is able to produce high-quality meshes, particularly with diverse topologies, as compared with the state-of-the-art methods.
arXiv Detail & Related papers (2022-06-10T08:32:57Z) - Deep Networks on Toroids: Removing Symmetries Reveals the Structure of
Flat Regions in the Landscape Geometry [3.712728573432119]
We develop a standardized parameterization in which all symmetries are removed, resulting in a toroidal topology.
We derive a meaningful notion of the flatness of minimizers and of the geodesic paths connecting them.
We also find that minimizers found by variants of gradient descent can be connected by zero-error paths with a single bend.
arXiv Detail & Related papers (2022-02-07T09:57:54Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations.
We propose a graph convolutional model for learning functions parametrized by the $k$-homological features of simplicial complexes.
arXiv Detail & Related papers (2021-10-28T14:59:41Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth.
In this paper, we introduce body segmentation as critical supervision.
To improve the reconstruction with part segmentation, we propose a part-level differentiable part that enables part-based models to be supervised by part segmentation.
arXiv Detail & Related papers (2020-03-24T14:25:46Z) - Learning Nonparametric Human Mesh Reconstruction from a Single Image
without Ground Truth Meshes [56.27436157101251]
We propose a novel approach to learn human mesh reconstruction without any ground truth meshes.
This is made possible by introducing two new terms into the loss function of a graph convolutional neural network (Graph CNN)
arXiv Detail & Related papers (2020-02-28T20:30:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.