SurvAttack: Black-Box Attack On Survival Models through Ontology-Informed EHR Perturbation
- URL: http://arxiv.org/abs/2412.18706v1
- Date: Tue, 24 Dec 2024 23:35:42 GMT
- Title: SurvAttack: Black-Box Attack On Survival Models through Ontology-Informed EHR Perturbation
- Authors: Mohsen Nayebi Kerdabadi, Arya Hadizadeh Moghaddam, Bin Liu, Mei Liu, Zijun Yao,
- Abstract summary: We introduce SurvAttack, a novel black-box adversarial attack framework for survival analysis models.
We specifically develop an algorithm to manipulate medical codes with various adversarial actions throughout a patient's medical history.
The proposed adversarial EHR perturbation algorithm is then used in an efficient SA-specific strategy to attack a survival model.
- Score: 9.500873129276531
- License:
- Abstract: Survival analysis (SA) models have been widely studied in mining electronic health records (EHRs), particularly in forecasting the risk of critical conditions for prioritizing high-risk patients. However, their vulnerability to adversarial attacks is much less explored in the literature. Developing black-box perturbation algorithms and evaluating their impact on state-of-the-art survival models brings two benefits to medical applications. First, it can effectively evaluate the robustness of models in pre-deployment testing. Also, exploring how subtle perturbations would result in significantly different outcomes can provide counterfactual insights into the clinical interpretation of model prediction. In this work, we introduce SurvAttack, a novel black-box adversarial attack framework leveraging subtle clinically compatible, and semantically consistent perturbations on longitudinal EHRs to degrade survival models' predictive performance. We specifically develop a greedy algorithm to manipulate medical codes with various adversarial actions throughout a patient's medical history. Then, these adversarial actions are prioritized using a composite scoring strategy based on multi-aspect perturbation quality, including saliency, perturbation stealthiness, and clinical meaningfulness. The proposed adversarial EHR perturbation algorithm is then used in an efficient SA-specific strategy to attack a survival model when estimating the temporal ranking of survival urgency for patients. To demonstrate the significance of our work, we conduct extensive experiments, including baseline comparisons, explainability analysis, and case studies. The experimental results affirm our research's effectiveness in illustrating the vulnerabilities of patient survival models, model interpretation, and ultimately contributing to healthcare quality.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Contrastive Learning of Temporal Distinctiveness for Survival Analysis
in Electronic Health Records [10.192973297290136]
We propose a novel Ontology-aware Temporality-based Contrastive Survival (OTCSurv) analysis framework.
OTCSurv uses survival durations from both censored and observed data to define temporal distinctiveness.
We conduct experiments using a large EHR dataset to forecast the risk of hospitalized patients who are in danger of developing acute kidney injury (AKI)
arXiv Detail & Related papers (2023-08-24T22:36:22Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
The Intensive Care Unit (ICU) is one of the most important parts of a hospital, which admits critically ill patients and provides continuous monitoring and treatment.
Various patient outcome prediction methods have been attempted to assist healthcare professionals in clinical decision-making.
arXiv Detail & Related papers (2023-08-24T05:26:56Z) - Neurological Prognostication of Post-Cardiac-Arrest Coma Patients Using
EEG Data: A Dynamic Survival Analysis Framework with Competing Risks [4.487368901635044]
We propose a framework for neurological prognostication of post-cardiac-arrest comatose patients using EEG data.
Our framework uses any dynamic survival analysis model that supports competing risks in the form of estimating patient-level cumulative incidence functions.
We demonstrate our framework by benchmarking three existing dynamic survival analysis models that support competing risks on a real dataset of 922 patients.
arXiv Detail & Related papers (2023-08-17T03:46:23Z) - Forecasting Patient Flows with Pandemic Induced Concept Drift using
Explainable Machine Learning [0.0]
This study investigates how a suite of novel quasi-real-time variables can improve the forecasting models of patient flows.
The prevailing COVID-19 Alert Level feature together with Google search terms and pedestrian traffic were effective at producing generalisable forecasts.
arXiv Detail & Related papers (2022-11-01T20:42:26Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - WRSE -- a non-parametric weighted-resolution ensemble for predicting
individual survival distributions in the ICU [0.251657752676152]
Dynamic assessment of mortality risk in the intensive care unit (ICU) can be used to stratify patients, inform about treatment effectiveness or serve as part of an early-warning system.
We show competitive results with state-of-the-art probabilistic models, while greatly reducing training time by factors of 2-9x.
arXiv Detail & Related papers (2020-11-02T10:13:59Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.