Multiple References with Meaningful Variations Improve Literary Machine Translation
- URL: http://arxiv.org/abs/2412.18707v1
- Date: Tue, 24 Dec 2024 23:49:12 GMT
- Title: Multiple References with Meaningful Variations Improve Literary Machine Translation
- Authors: Si Wu, John Wieting, David A. Smith,
- Abstract summary: Previous work has shown that using synthetic paraphrases can improve machine translation.
We classify the semantic similarity between paraphrases into three groups: low, medium, and high.
Using paraphrases of medium and high semantic similarity outperforms an unfiltered dataset.
- Score: 15.399876365676116
- License:
- Abstract: While a source sentence can be translated in many ways, most machine translation (MT) models are trained with only a single reference. Previous work has shown that using synthetic paraphrases can improve MT. This paper investigates best practices for employing multiple references by analyzing the semantic similarity among different English translations of world literature in the Par3 dataset. We classify the semantic similarity between paraphrases into three groups: low, medium, and high, and fine-tune two different LLMs (mT5-large and LLaMA-2-7B) for downstream MT tasks. Across different models, holding the total training instances constant, single-reference but more source texts only marginally outperforms multiple-reference with half of the source texts. Moreover, using paraphrases of medium and high semantic similarity outperforms an unfiltered dataset (+BLEU 0.3-0.5, +COMET 0.2-0.9, +chrF++ 0.25-0.32). Our code is publicly available on GitHub.
Related papers
- LexMatcher: Dictionary-centric Data Collection for LLM-based Machine Translation [67.24113079928668]
We present LexMatcher, a method for data curation driven by the coverage of senses found in bilingual dictionaries.
Our approach outperforms the established baselines on the WMT2022 test sets.
arXiv Detail & Related papers (2024-06-03T15:30:36Z) - Improving Text Embeddings with Large Language Models [59.930513259982725]
We introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps.
We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across 93 languages.
Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data.
arXiv Detail & Related papers (2023-12-31T02:13:18Z) - RETSim: Resilient and Efficient Text Similarity [1.6228944467258688]
RETSim is a lightweight, multilingual deep learning model trained to produce robust metric embeddings for text retrieval, clustering, and dataset deduplication tasks.
We demonstrate that RETSim is significantly more robust and accurate than MinHash and neural text embeddings.
We also introduce the W4NT3D benchmark for evaluating multilingual, near-duplicate text retrieval capabilities under adversarial settings.
arXiv Detail & Related papers (2023-11-28T22:54:33Z) - Machine Translation for Ge'ez Language [0.0]
Machine translation for low-resource languages such as Ge'ez faces challenges such as out-of-vocabulary words, domain mismatches, and lack of labeled training data.
We develop a multilingual neural machine translation (MNMT) model based on languages relatedness.
We also experiment with using GPT-3.5, a state-of-the-art LLM, for few-shot translation with fuzzy matches.
arXiv Detail & Related papers (2023-11-24T14:55:23Z) - On Search Strategies for Document-Level Neural Machine Translation [51.359400776242786]
Document-level neural machine translation (NMT) models produce a more consistent output across a document.
In this work, we aim to answer the question how to best utilize a context-aware translation model in decoding.
arXiv Detail & Related papers (2023-06-08T11:30:43Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - Beyond Triplet: Leveraging the Most Data for Multimodal Machine
Translation [53.342921374639346]
Multimodal machine translation aims to improve translation quality by incorporating information from other modalities, such as vision.
Previous MMT systems mainly focus on better access and use of visual information and tend to validate their methods on image-related datasets.
This paper establishes new methods and new datasets for MMT.
arXiv Detail & Related papers (2022-12-20T15:02:38Z) - Neural Machine Translation with Contrastive Translation Memories [71.86990102704311]
Retrieval-augmented Neural Machine Translation models have been successful in many translation scenarios.
We propose a new retrieval-augmented NMT to model contrastively retrieved translation memories that are holistically similar to the source sentence.
In training phase, a Multi-TM contrastive learning objective is introduced to learn salient feature of each TM with respect to target sentence.
arXiv Detail & Related papers (2022-12-06T17:10:17Z) - NMTScore: A Multilingual Analysis of Translation-based Text Similarity
Measures [42.46681912294797]
We analyze translation-based similarity measures in the common framework of multilingual NMT.
Compared to baselines such as sentence embeddings, translation-based measures prove competitive in paraphrase identification.
Measures show a relatively high correlation to human judgments.
arXiv Detail & Related papers (2022-04-28T17:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.