Effective and Lightweight Representation Learning for Link Sign Prediction in Signed Bipartite Graphs
- URL: http://arxiv.org/abs/2412.18720v1
- Date: Wed, 25 Dec 2024 00:39:38 GMT
- Title: Effective and Lightweight Representation Learning for Link Sign Prediction in Signed Bipartite Graphs
- Authors: Gyeongmin Gu, Minseo Jeon, Hyun-Je Song, Jinhong Jung,
- Abstract summary: We propose ELISE, an effective and lightweight GNN-based approach for learning signed bipartite graphs.
We first extend personalized propagation to a signed bipartite graph, incorporating signed edges during message passing.
We then jointly learn node embeddings on a low-rank approximation of the signed bipartite graph, which reduces potential noise.
- Score: 3.996726993941017
- License:
- Abstract: How can we effectively and efficiently learn node representations in signed bipartite graphs? A signed bipartite graph is a graph consisting of two nodes sets where nodes of different types are positively or negative connected, and it has been extensively used to model various real-world relationships such as e-commerce, etc. To analyze such a graph, previous studies have focused on designing methods for learning node representations using graph neural networks. In particular, these methods insert edges between nodes of the same type based on balance theory, enabling them to leverage augmented structures in their learning. However, the existing methods rely on a naive message passing design, which is prone to over-smoothing and susceptible to noisy interactions in real-world graphs. Furthermore, they suffer from computational inefficiency due to their heavy design and the significant increase in the number of added edges. In this paper, we propose ELISE, an effective and lightweight GNN-based approach for learning signed bipartite graphs. We first extend personalized propagation to a signed bipartite graph, incorporating signed edges during message passing. This extension adheres to balance theory without introducing additional edges, mitigating the over-smoothing issue and enhancing representation power. We then jointly learn node embeddings on a low-rank approximation of the signed bipartite graph, which reduces potential noise and emphasizes its global structure, further improving expressiveness without significant loss of efficiency. We encapsulate these ideas into ELISE, designing it to be lightweight, unlike the previous methods that add too many edges and cause inefficiency. Through extensive experiments on real-world signed bipartite graphs, we demonstrate that ELISE outperforms its competitors for predicting link signs while providing faster training and inference time.
Related papers
- Oversmoothing as Loss of Sign: Towards Structural Balance in Graph Neural Networks [54.62268052283014]
Oversmoothing is a common issue in graph neural networks (GNNs)
Three major classes of anti-oversmoothing techniques can be mathematically interpreted as message passing over signed graphs.
Negative edges can repel nodes to a certain extent, providing deeper insights into how these methods mitigate oversmoothing.
arXiv Detail & Related papers (2025-02-17T03:25:36Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - Self-Supervised Node Representation Learning via Node-to-Neighbourhood
Alignment [10.879056662671802]
Self-supervised node representation learning aims to learn node representations from unlabelled graphs that rival the supervised counterparts.
In this work, we present simple-yet-effective self-supervised node representation learning via aligning the hidden representations of nodes and their neighbourhood.
We learn node representations that achieve promising node classification performance on a set of graph-structured datasets from small- to large-scale.
arXiv Detail & Related papers (2023-02-09T13:21:18Z) - STERLING: Synergistic Representation Learning on Bipartite Graphs [78.86064828220613]
A fundamental challenge of bipartite graph representation learning is how to extract node embeddings.
Most recent bipartite graph SSL methods are based on contrastive learning which learns embeddings by discriminating positive and negative node pairs.
We introduce a novel synergistic representation learning model (STERLING) to learn node embeddings without negative node pairs.
arXiv Detail & Related papers (2023-01-25T03:21:42Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
We introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL)
In spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
arXiv Detail & Related papers (2022-12-08T23:36:00Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - Self-Supervised Graph Learning with Proximity-based Views and Channel
Contrast [4.761137180081091]
Graph neural networks (GNNs) use neighborhood aggregation as a core component that results in feature smoothing among nodes in proximity.
To tackle this problem, we strengthen the graph with two additional graph views, in which nodes are directly linked to those with the most similar features or local structures.
We propose a method that aims to maximize the agreement between representations across generated views and the original graph.
arXiv Detail & Related papers (2021-06-07T15:38:36Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
We propose a novel graph contrastive representation learning method with adaptive augmentation.
Specifically, we design augmentation schemes based on node centrality measures to highlight important connective structures.
Our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts.
arXiv Detail & Related papers (2020-10-27T15:12:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.