On the Robustness of Generative Information Retrieval Models
- URL: http://arxiv.org/abs/2412.18768v1
- Date: Wed, 25 Dec 2024 03:51:26 GMT
- Title: On the Robustness of Generative Information Retrieval Models
- Authors: Yu-An Liu, Ruqing Zhang, Jiafeng Guo, Changjiang Zhou, Maarten de Rijke, Xueqi Cheng,
- Abstract summary: Generative information retrieval methods retrieve documents by directly generating their identifiers.
It is critical to assess the out-of-distribution generalization of generative IR models, i.e., how would such models generalize to new distributions?
We focus on OOD scenarios from four perspectives in retrieval problems: (i)query variations; (ii)unseen query types; (iii)unseen tasks; and (iv)corpus expansion.
- Score: 103.64767016243015
- License:
- Abstract: Generative information retrieval methods retrieve documents by directly generating their identifiers. Much effort has been devoted to developing effective generative IR models. Less attention has been paid to the robustness of these models. It is critical to assess the out-of-distribution (OOD) generalization of generative IR models, i.e., how would such models generalize to new distributions? To answer this question, we focus on OOD scenarios from four perspectives in retrieval problems: (i)query variations; (ii)unseen query types; (iii)unseen tasks; and (iv)corpus expansion. Based on this taxonomy, we conduct empirical studies to analyze the OOD robustness of representative generative IR models against dense retrieval models. Our empirical results indicate that the OOD robustness of generative IR models is in need of improvement. By inspecting the OOD robustness of generative IR models we aim to contribute to the development of more reliable IR models. The code is available at \url{https://github.com/Davion-Liu/GR_OOD}.
Related papers
- Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - Robust Neural Information Retrieval: An Adversarial and Out-of-distribution Perspective [111.58315434849047]
robustness of neural information retrieval models (IR) models has garnered significant attention.
We view the robustness of IR to be a multifaceted concept, emphasizing its necessity against adversarial attacks, out-of-distribution (OOD) scenarios and performance variance.
We provide an in-depth discussion of existing methods, datasets, and evaluation metrics, shedding light on challenges and future directions in the era of large language models.
arXiv Detail & Related papers (2024-07-09T16:07:01Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
We present RewardBench, a benchmark dataset and code-base for evaluation of reward models.
The dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety.
On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods.
arXiv Detail & Related papers (2024-03-20T17:49:54Z) - A Survey on Evaluation of Out-of-Distribution Generalization [41.39827887375374]
Out-of-Distribution (OOD) generalization is a complex and fundamental problem.
This paper serves as the first effort to conduct a comprehensive review of OOD evaluation.
We categorize existing research into three paradigms: OOD performance testing, OOD performance prediction, and OOD intrinsic property characterization.
arXiv Detail & Related papers (2024-03-04T09:30:35Z) - On the Robustness of Generative Retrieval Models: An Out-of-Distribution
Perspective [65.16259505602807]
We study the robustness of generative retrieval models against dense retrieval models.
The empirical results indicate that the OOD robustness of generative retrieval models requires enhancement.
arXiv Detail & Related papers (2023-06-22T09:18:52Z) - Models Out of Line: A Fourier Lens on Distribution Shift Robustness [29.12208822285158]
Improving accuracy of deep neural networks (DNNs) on out-of-distribution (OOD) data is critical to an acceptance of deep learning (DL) in real world applications.
Recently, some promising approaches have been developed to improve OOD robustness.
There still is no clear understanding of the conditions on OOD data and model properties that are required to observe effective robustness.
arXiv Detail & Related papers (2022-07-08T18:05:58Z) - Entity-Conditioned Question Generation for Robust Attention Distribution
in Neural Information Retrieval [51.53892300802014]
We show that supervised neural information retrieval models are prone to learning sparse attention patterns over passage tokens.
Using a novel targeted synthetic data generation method, we teach neural IR to attend more uniformly and robustly to all entities in a given passage.
arXiv Detail & Related papers (2022-04-24T22:36:48Z) - BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information
Retrieval Models [41.45240621979654]
We introduce BEIR, a heterogeneous benchmark for information retrieval.
We study the effectiveness of nine state-of-the-art retrieval models in a zero-shot evaluation setup.
Dense-retrieval models are computationally more efficient but often underperform other approaches.
arXiv Detail & Related papers (2021-04-17T23:29:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.