論文の概要: Unified Local and Global Attention Interaction Modeling for Vision Transformers
- arxiv url: http://arxiv.org/abs/2412.18778v1
- Date: Wed, 25 Dec 2024 04:53:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:29:23.692439
- Title: Unified Local and Global Attention Interaction Modeling for Vision Transformers
- Title(参考訳): 視覚変換器の局所的・大域的注意相互作用モデリング
- Authors: Tan Nguyen, Coy D. Heldermon, Corey Toler-Franklin,
- Abstract要約: 本稿では,視覚変換器(ViT)の自己認識機構を拡張し,多様なデータセット間でより正確な物体検出を行う手法を提案する。
ViTは、オブジェクト検出、セグメンテーション、分類などの画像理解タスクに強力な能力を示す。
従来の自己意識フレームワークには,局所的特徴混合のための新たなアグレッシブ・コンボリューション・プール戦略と,新たな概念的アテンション・トランスフォーメーションという,2つの改良が加えられている。
- 参考スコア(独自算出の注目度): 1.9571946424055506
- License:
- Abstract: We present a novel method that extends the self-attention mechanism of a vision transformer (ViT) for more accurate object detection across diverse datasets. ViTs show strong capability for image understanding tasks such as object detection, segmentation, and classification. This is due in part to their ability to leverage global information from interactions among visual tokens. However, the self-attention mechanism in ViTs are limited because they do not allow visual tokens to exchange local or global information with neighboring features before computing global attention. This is problematic because tokens are treated in isolation when attending (matching) to other tokens, and valuable spatial relationships are overlooked. This isolation is further compounded by dot-product similarity operations that make tokens from different semantic classes appear visually similar. To address these limitations, we introduce two modifications to the traditional self-attention framework; a novel aggressive convolution pooling strategy for local feature mixing, and a new conceptual attention transformation to facilitate interaction and feature exchange between semantic concepts. Experimental results demonstrate that local and global information exchange among visual features before self-attention significantly improves performance on challenging object detection tasks and generalizes across multiple benchmark datasets and challenging medical datasets. We publish source code and a novel dataset of cancerous tumors (chimeric cell clusters).
- Abstract(参考訳): 本稿では,視覚変換器(ViT)の自己認識機構を拡張し,多様なデータセット間でより正確な物体検出を行う手法を提案する。
ViTは、オブジェクト検出、セグメンテーション、分類などの画像理解タスクに強力な能力を示す。
これは、視覚トークン間の相互作用からグローバル情報を活用する能力の一部が原因である。
しかし、ViTの自己保持機構は、視覚トークンがグローバルな注意を計算する前に、近隣の特徴とローカルまたはグローバルな情報を交換することを許さないため、制限されている。
これは、トークンが他のトークンへの参加(マッチング)の際に単独で扱われるためであり、貴重な空間関係は見過ごされてしまうためである。
この分離は、異なるセマンティッククラスからのトークンを視覚的に類似させるドット積類似性演算によってさらに複雑になる。
これらの制約に対処するため,従来の自己意識フレームワークに,局所的特徴混合のための新たなアグレッシブ・コンボリューション・プール戦略と,意味的概念間の相互作用と特徴交換を容易にする新しい概念的アテンション・トランスフォーメーションを導入する。
実験結果から,自己注意前の視覚的特徴間の局所的およびグローバルな情報交換は,オブジェクト検出タスクの課題に対するパフォーマンスを著しく向上し,複数のベンチマークデータセットと課題の医学的データセットにまたがって一般化することが示された。
我々は,癌腫瘍(キメラ細胞クラスター)のソースコードと新しいデータセットを公表する。
関連論文リスト
- KNN Transformer with Pyramid Prompts for Few-Shot Learning [52.735070934075736]
Few-Shot Learningはラベル付きデータで新しいクラスを認識することを目的としている。
近年の研究では、視覚的特徴を調節するためのテキストプロンプトを用いたまれなサンプルの課題に対処しようと試みている。
論文 参考訳(メタデータ) (2024-10-14T07:39:30Z) - Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection [57.883265488038134]
本稿では,HGINetと呼ばれる階層的なグラフ相互作用ネットワークを提案する。
このネットワークは、階層的トークン化機能間の効果的なグラフ相互作用を通じて、知覚不能なオブジェクトを発見することができる。
本実験は,既存の最先端手法と比較して,HGINetの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-08-27T12:53:25Z) - Other Tokens Matter: Exploring Global and Local Features of Vision Transformers for Object Re-Identification [63.147482497821166]
我々はまず,ViTのグローバルおよびローカルな特徴の影響を探求し,高性能オブジェクトRe-IDのための新しいグローバルローカ変換器(GLTrans)を提案する。
提案手法は,4つのオブジェクトRe-IDベンチマークにおいて優れた性能を実現する。
論文 参考訳(メタデータ) (2024-04-23T12:42:07Z) - Exploring Interactive Semantic Alignment for Efficient HOI Detection with Vision-language Model [3.3772986620114387]
ISA-HOIはCLIPからの知識を広範囲に活用し,視覚的特徴とテキスト的特徴の対話的意味論を整合させる。
本手法は, HICO-DETとV-COCOのベンチマークにおいて, トレーニングエポックがはるかに少なく, ゼロショット環境下での最先端性能を向上する。
論文 参考訳(メタデータ) (2024-04-19T07:24:32Z) - Dissecting Query-Key Interaction in Vision Transformers [4.743574336827573]
視覚変換器における自己注意はしばしば知覚的なグループ化を行うと考えられている。
相互作用行列の特異値分解による問合せキーの相互作用の解析を行う。
論文 参考訳(メタデータ) (2024-04-04T20:06:07Z) - Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、人間中心の画像理解のコアタスクである。
最近のワンステージ手法では、対話予測に有用な画像ワイドキューの収集にトランスフォーマーデコーダを採用している。
従来の2段階の手法は、非絡み合いで説明可能な方法で相互作用特徴を構成する能力から大きな恩恵を受ける。
論文 参考訳(メタデータ) (2023-12-04T08:02:59Z) - Masked Momentum Contrastive Learning for Zero-shot Semantic
Understanding [39.424931953675994]
自己教師付き事前学習(SSP)は、ラベル付きデータなしで有意義な特徴表現を抽出できる機械学習の一般的な手法として登場した。
本研究は、コンピュータビジョンタスクにおける純粋な自己教師付き学習(SSL)技術の有効性を評価する。
論文 参考訳(メタデータ) (2023-08-22T13:55:57Z) - AttentionViz: A Global View of Transformer Attention [60.82904477362676]
本研究では,変圧器の自己保持機構を研究者が理解するための新しい可視化手法を提案する。
提案手法の背景にある主な考え方は,問合せとキーベクトルの結合埋め込みを可視化し,注意力を計算することである。
このような共同クエリキーの埋め込みに基づいて,インタラクティブな可視化ツールであるAttentionVizを開発した。
論文 参考訳(メタデータ) (2023-05-04T23:46:49Z) - Rethinking Query-Key Pairwise Interactions in Vision Transformers [5.141895475956681]
本稿では,問合せキーの対の相互作用を排除し,注意重みを求めるために計算効率の高い相性ゲートを用いるキーオンリーの注意を提案する。
我々は、ImageNet分類ベンチマークのパラメータ限定設定において、最先端の精度に達する新しい自己注意モデルファミリーLinGlosを開発した。
論文 参考訳(メタデータ) (2022-07-01T03:36:49Z) - Visualizing and Understanding Patch Interactions in Vision Transformer [96.70401478061076]
Vision Transformer (ViT) は様々なコンピュータビジョンタスクにおいて主要なツールとなっている。
本稿では,視覚変換器のパッチ間の重要な注意相互作用を分析し,解釈するための,説明可能な新しい可視化手法を提案する。
論文 参考訳(メタデータ) (2022-03-11T13:48:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。