論文の概要: Protective Perturbations against Unauthorized Data Usage in Diffusion-based Image Generation
- arxiv url: http://arxiv.org/abs/2412.18791v1
- Date: Wed, 25 Dec 2024 06:06:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:26:41.219236
- Title: Protective Perturbations against Unauthorized Data Usage in Diffusion-based Image Generation
- Title(参考訳): 拡散画像生成における不正データ利用に対する保護的妨害
- Authors: Sen Peng, Jijia Yang, Mingyue Wang, Jianfei He, Xiaohua Jia,
- Abstract要約: 拡散に基づくテキスト・ツー・イメージモデルは、様々な画像関連タスクに対して大きな可能性を示してきた。
認証されていないデータを使ってこれらのモデルをカスタマイズすることは、深刻なプライバシーと知的財産の問題を引き起こす。
既存の方法は、敵の攻撃に基づく保護的摂動を導入する。
本稿では,拡散画像生成における不正なデータ使用を防止するための保護摂動法について検討する。
- 参考スコア(独自算出の注目度): 15.363134355805764
- License:
- Abstract: Diffusion-based text-to-image models have shown immense potential for various image-related tasks. However, despite their prominence and popularity, customizing these models using unauthorized data also brings serious privacy and intellectual property issues. Existing methods introduce protective perturbations based on adversarial attacks, which are applied to the customization samples. In this systematization of knowledge, we present a comprehensive survey of protective perturbation methods designed to prevent unauthorized data usage in diffusion-based image generation. We establish the threat model and categorize the downstream tasks relevant to these methods, providing a detailed analysis of their designs. We also propose a completed evaluation framework for these perturbation techniques, aiming to advance research in this field.
- Abstract(参考訳): 拡散に基づくテキスト・ツー・イメージモデルは、様々な画像関連タスクに対して大きな可能性を示してきた。
しかし、その人気と人気にもかかわらず、認証されていないデータを使ってこれらのモデルをカスタマイズすることは、深刻なプライバシーと知的財産問題を引き起こす。
既存の手法では、敵攻撃に基づく保護摂動を導入し、カスタマイズサンプルに適用している。
本稿では,拡散画像生成における不正なデータ使用を防止するために設計された保護摂動法を包括的に調査する。
脅威モデルを確立し、これらの手法に関連する下流タスクを分類し、それらの設計を詳細に分析する。
また,この分野での研究を推進すべく,これらの摂動技術の評価フレームワークの完成も提案する。
関連論文リスト
- Towards Reliable Verification of Unauthorized Data Usage in Personalized Text-to-Image Diffusion Models [23.09033991200197]
新しいパーソナライズ技術は、特定のテーマやスタイルのイメージを作成するために、事前訓練されたベースモデルをカスタマイズするために提案されている。
このような軽量なソリューションは、パーソナライズされたモデルが不正なデータからトレーニングされているかどうかに関して、新たな懸念を生じさせる。
我々は、ブラックボックスパーソナライズされたテキスト・ツー・イメージ拡散モデルにおいて、不正なデータ使用を積極的に追跡する新しい手法であるSIRENを紹介する。
論文 参考訳(メタデータ) (2024-10-14T12:29:23Z) - Rethinking and Defending Protective Perturbation in Personalized Diffusion Models [21.30373461975769]
パーソナライズされた拡散モデル(PDM)の微調整過程について,ショートカット学習のレンズを用いて検討した。
PDMは小さな逆境の摂動に影響を受けやすいため、破損したデータセットを微調整すると著しく劣化する。
本稿では,データ浄化と対照的なデカップリング学習を含むシステム防衛フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-27T07:14:14Z) - EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations [73.94175015918059]
本稿では、未承認のデータセット使用のトレーサビリティを高める新しいアプローチであるEnTruthを紹介する。
テンプレートの暗記を戦略的に取り入れることで、EnTruthは不正なモデルの特定の振る舞いを侵害の証拠として引き起こすことができる。
本手法は, 暗記の正当性を調査し, 著作権保護に利用し, 呪いを祝福する最初の方法である。
論文 参考訳(メタデータ) (2024-06-20T02:02:44Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
本稿では,生の画素空間ではなく,潜在空間における非知覚的対角的アイデンティティ摂動を生成できる統一的なフレームワークAdv-Diffusionを提案する。
具体的には,周囲のセマンティックな摂動を生成するために,個人性に敏感な条件付き拡散生成モデルを提案する。
設計された適応強度に基づく対向摂動アルゴリズムは、攻撃の伝達性とステルス性の両方を確保することができる。
論文 参考訳(メタデータ) (2023-12-18T15:25:23Z) - Can Protective Perturbation Safeguard Personal Data from Being Exploited by Stable Diffusion? [21.75921532822961]
元の画像構造を保ちながら保護された摂動を除去できる浄化方法を提案する。
実験により、安定拡散は、すべての保護方法において、精製された画像から効果的に学習できることが判明した。
論文 参考訳(メタデータ) (2023-11-30T07:17:43Z) - IMPRESS: Evaluating the Resilience of Imperceptible Perturbations
Against Unauthorized Data Usage in Diffusion-Based Generative AI [52.90082445349903]
拡散ベースの画像生成モデルは、アーティストのスタイルを模倣するアートイメージを作成したり、偽のコンテンツのためにオリジナルの画像を悪意を持って編集することができる。
知覚不能な摂動を追加することによって、元のイメージをそのような不正なデータ使用から保護する試みがいくつかなされている。
本研究では, IMPRESS という浄化摂動プラットフォームを導入し, 非受容性摂動の有効性を保護策として評価する。
論文 参考訳(メタデータ) (2023-10-30T03:33:41Z) - Unlearnable Examples for Diffusion Models: Protect Data from Unauthorized Exploitation [25.55296442023984]
本研究では,不正な利用から画像を保護するために,Unlearnable Diffusion Perturbationを提案する。
この成果は、AI生成コンテンツに対するプライバシーと著作権の保護に寄与するため、現実世界のシナリオにおいて重要な意味を持つ。
論文 参考訳(メタデータ) (2023-06-02T20:19:19Z) - Scapegoat Generation for Privacy Protection from Deepfake [21.169776378130635]
本稿では,原文入力のスタイルを変更してスケープゴート画像を生成する「ディープフェイク防止のための新しい問題定式化を提案する。
悪意のあるディープフェイクであっても、ユーザーのプライバシーは保護されている。
論文 参考訳(メタデータ) (2023-03-06T06:52:00Z) - Data Forensics in Diffusion Models: A Systematic Analysis of Membership
Privacy [62.16582309504159]
本研究では,拡散モデルに対するメンバシップ推論攻撃の系統的解析を開発し,各攻撃シナリオに適した新しい攻撃手法を提案する。
提案手法は容易に入手可能な量を利用して,現実的なシナリオにおいてほぼ完全な攻撃性能 (>0.9 AUCROC) を達成することができる。
論文 参考訳(メタデータ) (2023-02-15T17:37:49Z) - Adversarial Examples Detection beyond Image Space [88.7651422751216]
摂動と予測信頼の間にはコンプライアンスが存在することが分かり、予測信頼の面から少数の摂動攻撃を検出するための指針となる。
本研究では,画像ストリームが画素アーティファクトに注目し,勾配ストリームが信頼度アーティファクトに対応する2ストリームアーキテクチャによる画像空間を超えた手法を提案する。
論文 参考訳(メタデータ) (2021-02-23T09:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。