論文の概要: Improving Generated and Retrieved Knowledge Combination Through Zero-shot Generation
- arxiv url: http://arxiv.org/abs/2412.18800v1
- Date: Wed, 25 Dec 2024 06:40:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:27:12.553140
- Title: Improving Generated and Retrieved Knowledge Combination Through Zero-shot Generation
- Title(参考訳): ゼロショット生成による生成知識と検索知識の組み合わせの改善
- Authors: Xinkai Du, Quanjie Han, Chao Lv, Yan Liu, Yalin Sun, Hao Shu, Hongbo Shan, Maosong Sun,
- Abstract要約: オープンドメイン質問回答(QA)は,大規模言語モデル(LLM)による忠実に検索されたパスと関連するパスを組み合わせることで,かなりの関心を集めている。
これらの知識の源と組み合わせるための明確なラベルが不足している。
本稿では,検索したパスとLLM生成したパスの両方に対して,再格付け手法を利用したBi-Re rank for Merging Generated and Retrieved Knowledge (BRMGR)を提案する。
- 参考スコア(独自算出の注目度): 41.43397783169612
- License:
- Abstract: Open-domain Question Answering (QA) has garnered substantial interest by combining the advantages of faithfully retrieved passages and relevant passages generated through Large Language Models (LLMs). However, there is a lack of definitive labels available to pair these sources of knowledge. In order to address this issue, we propose an unsupervised and simple framework called Bi-Reranking for Merging Generated and Retrieved Knowledge (BRMGR), which utilizes re-ranking methods for both retrieved passages and LLM-generated passages. We pair the two types of passages using two separate re-ranking methods and then combine them through greedy matching. We demonstrate that BRMGR is equivalent to employing a bipartite matching loss when assigning each retrieved passage with a corresponding LLM-generated passage. The application of our model yielded experimental results from three datasets, improving their performance by +1.7 and +1.6 on NQ and WebQ datasets, respectively, and obtaining comparable result on TriviaQA dataset when compared to competitive baselines.
- Abstract(参考訳): オープンドメイン質問回答 (QA) は,Large Language Models (LLMs) を通じて,忠実に検索されたパスと関連するパスの利点を組み合わせることで,かなりの関心を集めている。
しかし、これらの知識ソースをペアにするための明確なラベルが不足している。
この問題に対処するために,検索された文節とLLM生成文節の両方の復格手法を利用するbi-Re rank for Merging Generated and Retrieved Knowledge (BRMGR) という,教師なしかつシンプルなフレームワークを提案する。
2種類のパスを2つの別々に再ランク付けした手法でペアリングし、それらをグリーディマッチングで組み合わせます。
そこで, BRMGRは, 検索した各経路を対応するLLM生成経路に割り当てる際に, 両部整合損失を用いたものと等価であることを示す。
その結果,NQデータセットとWebQデータセットでは+1.7,+1.6,TriviaQAデータセットでは競合ベースラインと比較して比較結果が得られた。
関連論文リスト
- RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
大きな言語モデル(LLM)は優れた能力を示すが、不正確なあるいは幻覚反応を引き起こす傾向がある。
この制限は、膨大な事前トレーニングデータセットに依存することに起因するため、目に見えないシナリオでのエラーの影響を受けやすい。
Retrieval-Augmented Generation (RAG) は、外部の関連文書を応答生成プロセスに組み込むことによって、この問題に対処する。
論文 参考訳(メタデータ) (2024-03-31T08:58:54Z) - Consistency Guided Knowledge Retrieval and Denoising in LLMs for
Zero-shot Document-level Relation Triplet Extraction [43.50683283748675]
文書レベルの関係トリプルト抽出(DocRTE)は、文書から意味的関係を持つエンティティを同時に抽出することを目的とした情報システムの基本課題である。
既存の手法は、かなりの量の完全なラベル付きデータに依存している。
ChatGPTやLLaMAのような最近の先進言語モデル(LLM)は、素晴らしい長文生成能力を示している。
論文 参考訳(メタデータ) (2024-01-24T17:04:28Z) - Merging Generated and Retrieved Knowledge for Open-Domain QA [72.42262579925911]
COMBOは、より良いオープンドメインQAフレームワークのための互換性指向の知識の融合である。
COMBOは4つのテスト済みオープンドメインQAベンチマークのうち3つで競合ベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2023-10-22T19:37:06Z) - DQ-LoRe: Dual Queries with Low Rank Approximation Re-ranking for
In-Context Learning [66.85379279041128]
そこで本研究では,Dual Queries と Low-rank approximation Re- rank を利用して,文脈内学習のための例を自動選択するフレームワークを提案する。
DQ-LoRe は GPT-4 の自動選択において最先端の手法よりも優れ、92.5% から94.2% まで性能が向上した。
論文 参考訳(メタデータ) (2023-10-04T16:44:37Z) - Modeling Uncertainty and Using Post-fusion as Fallback Improves Retrieval Augmented Generation with LLMs [80.74263278847063]
検索されたパスと大きな言語モデル(LLM)の統合は、オープンドメインの質問応答の改善に大きく貢献している。
本稿では,検索したパスをLLMと組み合わせて回答生成を向上させる方法について検討する。
論文 参考訳(メタデータ) (2023-08-24T05:26:54Z) - Recitation-Augmented Language Models [85.30591349383849]
知識集約型NLPタスクにおいて,RECITEは強力なパラダイムであることを示す。
具体的には、リサイクリングを中間ステップとして活用することにより、新しい最先端性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-10-04T00:49:20Z) - Learning to Rank Question Answer Pairs with Bilateral Contrastive Data
Augmentation [39.22166065525888]
本稿では,バイラテラル生成(Bilateral Generation, BiG)という,新鮮で使いやすいデータ拡張戦略を提案する。
拡張データセットを用いて、質問応答ペアのランク付けを学習するための対照的な訓練目標を設計する。
TREC-QA,WikiQA,AntiQUEの3つのベンチマークデータセットによる実験結果から,本手法はランキングモデルの性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2021-06-21T13:29:43Z) - Joint Passage Ranking for Diverse Multi-Answer Retrieval [56.43443577137929]
質問に対する複数の異なる回答をカバーするために、パスの取得を必要とする探索不足の問題であるマルチアンサー検索について検討する。
モデルが別の有効な答えを逃す費用で同じ答えを含む通路を繰り返すべきではないので、このタスクは、検索された通路の共同モデリングを必要とします。
本稿では,再順位に着目したジョイントパス検索モデルであるJPRを紹介する。
回収された通路の合同確率をモデル化するために、JPRは、新しい訓練および復号アルゴリズムを備えた通路のシーケンスを選択する自動回帰リタイナを利用する。
論文 参考訳(メタデータ) (2021-04-17T04:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。