論文の概要: Adversarial Training for Graph Neural Networks via Graph Subspace Energy Optimization
- arxiv url: http://arxiv.org/abs/2412.18886v1
- Date: Wed, 25 Dec 2024 12:04:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:25:34.614301
- Title: Adversarial Training for Graph Neural Networks via Graph Subspace Energy Optimization
- Title(参考訳): グラフサブスペースエネルギー最適化によるグラフニューラルネットワークの逆学習
- Authors: Ganlin Liu, Ziling Liang, Xiaowei Huang, Xinping Yi, Shi Jin,
- Abstract要約: 本稿では,GNNのトポロジー摂動に対する頑健性の指標として,グラフ部分空間エネルギー(GSE)の新たな概念を提案する。
広範な実験により、AT-GSEは最先端のGNN敵の訓練方法よりも一貫して優れていたことが示されている。
- 参考スコア(独自算出の注目度): 39.720316105589326
- License:
- Abstract: Despite impressive capability in learning over graph-structured data, graph neural networks (GNN) suffer from adversarial topology perturbation in both training and inference phases. While adversarial training has demonstrated remarkable effectiveness in image classification tasks, its suitability for GNN models has been doubted until a recent advance that shifts the focus from transductive to inductive learning. Still, GNN robustness in the inductive setting is under-explored, and it calls for deeper understanding of GNN adversarial training. To this end, we propose a new concept of graph subspace energy (GSE) -- a generalization of graph energy that measures graph stability -- of the adjacency matrix, as an indicator of GNN robustness against topology perturbations. To further demonstrate the effectiveness of such concept, we propose an adversarial training method with the perturbed graphs generated by maximizing the GSE regularization term, referred to as AT-GSE. To deal with the local and global topology perturbations raised respectively by LRBCD and PRBCD, we employ randomized SVD (RndSVD) and Nystrom low-rank approximation to favor the different aspects of the GSE terms. An extensive set of experiments shows that AT-GSE outperforms consistently the state-of-the-art GNN adversarial training methods over different homophily and heterophily datasets in terms of adversarial accuracy, whilst more surprisingly achieving a superior clean accuracy on non-perturbed graphs.
- Abstract(参考訳): グラフ構造化データ上での学習能力は優れていますが、グラフニューラルネットワーク(GNN)は、トレーニングと推論フェーズの両方において、対向的なトポロジ摂動に悩まされています。
逆行訓練は画像分類作業において顕著な効果を示したが、GNNモデルへの適合性は、近年の進歩により、帰納的学習から帰納的学習へと焦点を移すまで疑問視されてきた。
それでも、誘導的環境におけるGNNの堅牢性は未解明であり、GNNの敵の訓練をより深く理解することを求めている。
この目的のために、GNNのトポロジー摂動に対する堅牢性を示す指標として、グラフの安定性を測るグラフエネルギーの一般化であるグラフ部分空間エネルギー(GSE)の新たな概念を提案する。
このような概念の有効性をさらに実証するために,AT-GSE と呼ばれる GSE 正規化項を最大化して発生する摂動グラフを用いた対角トレーニング手法を提案する。
LRBCD と PRBCD によって引き起こされた局所的およびグローバル的トポロジの摂動に対処するために,GSE 項の異なる側面を支持するためにランダム化された SVD (RndSVD) と Nystrom の低ランク近似を用いる。
広範な実験により、AT-GSEは、非摂動グラフにおいてより優れたクリーンな精度を達成する一方で、異なるホモフィリーおよびヘテロフィリーデータセットに対して、最先端のGNN逆行訓練手法を一貫して上回っていることが示されている。
関連論文リスト
- DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - Design Your Own Universe: A Physics-Informed Agnostic Method for Enhancing Graph Neural Networks [34.16727363891593]
グラフニューラルネットワーク(GNN)のためのモデルに依存しない拡張フレームワークを提案する。
このフレームワークは、追加ノードを導入し、負の重み付けと負の重み付けの両方で接続を切り替えることでグラフ構造を豊かにする。
提案手法によって強化されたGNNが,過度にスムースな問題を効果的に回避し,過度なスキャッシングに対する堅牢性を示すことを理論的に検証する。
好中球グラフ,ヘテロ親和性グラフ,長期グラフデータセットのベンチマークにおける実証的検証により,本手法により強化されたGNNが元のグラフよりも有意に優れていることが示された。
論文 参考訳(メタデータ) (2024-01-26T00:47:43Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
ヘテロジニアスグラフニューラルネットワーク(HGNN)は、Webやeコマースなどの分野でのパフォーマンスでますます認識されている。
本稿ではヘテロジニアスグラフに対する最初の専用グレーボックス回避手法であるHGAttackを紹介する。
論文 参考訳(メタデータ) (2024-01-18T12:47:13Z) - HC-Ref: Hierarchical Constrained Refinement for Robust Adversarial
Training of GNNs [7.635985143883581]
コンピュータビジョンにおける敵の攻撃に対する最も効果的な防御機構の1つとされる敵の訓練は、GNNの堅牢性を高めるという大きな約束を持っている。
本稿では,GNNと下流分類器の対摂動性を高める階層的制約改善フレームワーク(HC-Ref)を提案する。
論文 参考訳(メタデータ) (2023-12-08T07:32:56Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - CAP: Co-Adversarial Perturbation on Weights and Features for Improving
Generalization of Graph Neural Networks [59.692017490560275]
敵の訓練は、敵の攻撃に対するモデルの堅牢性を改善するために広く実証されてきた。
グラフ解析問題におけるGNNの一般化能力をどのように改善するかは、まだ不明である。
我々は、重みと特徴量の観点から共振器摂動(CAP)最適化問題を構築し、重みと特徴の損失を交互に平らにする交互対振器摂動アルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-10-28T02:28:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。