EC-Diffuser: Multi-Object Manipulation via Entity-Centric Behavior Generation
- URL: http://arxiv.org/abs/2412.18907v2
- Date: Fri, 14 Feb 2025 20:43:22 GMT
- Title: EC-Diffuser: Multi-Object Manipulation via Entity-Centric Behavior Generation
- Authors: Carl Qi, Dan Haramati, Tal Daniel, Aviv Tamar, Amy Zhang,
- Abstract summary: Learning to manipulate objects from high-dimensional observations presents significant challenges.
Recent approaches have utilized large-scale offline data to train models from pixel observations.
We propose a novel behavioral cloning (BC) approach that leverages object-centric representations and an entity-centric Transformer.
- Score: 25.12999060040265
- License:
- Abstract: Object manipulation is a common component of everyday tasks, but learning to manipulate objects from high-dimensional observations presents significant challenges. These challenges are heightened in multi-object environments due to the combinatorial complexity of the state space as well as of the desired behaviors. While recent approaches have utilized large-scale offline data to train models from pixel observations, achieving performance gains through scaling, these methods struggle with compositional generalization in unseen object configurations with constrained network and dataset sizes. To address these issues, we propose a novel behavioral cloning (BC) approach that leverages object-centric representations and an entity-centric Transformer with diffusion-based optimization, enabling efficient learning from offline image data. Our method first decomposes observations into an object-centric representation, which is then processed by our entity-centric Transformer that computes attention at the object level, simultaneously predicting object dynamics and the agent's actions. Combined with the ability of diffusion models to capture multi-modal behavior distributions, this results in substantial performance improvements in multi-object tasks and, more importantly, enables compositional generalization. We present BC agents capable of zero-shot generalization to tasks with novel compositions of objects and goals, including larger numbers of objects than seen during training. We provide video rollouts on our webpage: https://sites.google.com/view/ec-diffuser.
Related papers
- Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast
Contrastive Fusion [110.84357383258818]
We propose a novel approach to lift 2D segments to 3D and fuse them by means of a neural field representation.
The core of our approach is a slow-fast clustering objective function, which is scalable and well-suited for scenes with a large number of objects.
Our approach outperforms the state-of-the-art on challenging scenes from the ScanNet, Hypersim, and Replica datasets.
arXiv Detail & Related papers (2023-06-07T17:57:45Z) - Neural Constraint Satisfaction: Hierarchical Abstraction for
Combinatorial Generalization in Object Rearrangement [75.9289887536165]
We present a hierarchical abstraction approach to uncover underlying entities.
We show how to learn a correspondence between intervening on states of entities in the agent's model and acting on objects in the environment.
We use this correspondence to develop a method for control that generalizes to different numbers and configurations of objects.
arXiv Detail & Related papers (2023-03-20T18:19:36Z) - Learn to Predict How Humans Manipulate Large-sized Objects from
Interactive Motions [82.90906153293585]
We propose a graph neural network, HO-GCN, to fuse motion data and dynamic descriptors for the prediction task.
We show the proposed network that consumes dynamic descriptors can achieve state-of-the-art prediction results and help the network better generalize to unseen objects.
arXiv Detail & Related papers (2022-06-25T09:55:39Z) - Efficient and Robust Training of Dense Object Nets for Multi-Object
Robot Manipulation [8.321536457963655]
We propose a framework for robust and efficient training of Dense Object Nets (DON)
We focus on training with multi-object data instead of singulated objects, combined with a well-chosen augmentation scheme.
We demonstrate the robustness and accuracy of our proposed framework on a real-world robotic grasping task.
arXiv Detail & Related papers (2022-06-24T08:24:42Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
This research aims to conduct weakly-supervised multi-modal instance-level product retrieval for fine-grained product categories.
We first contribute the Product1M datasets, and define two real practical instance-level retrieval tasks.
We exploit to train a more effective cross-modal model which is adaptively capable of incorporating key concept information from the multi-modal data.
arXiv Detail & Related papers (2022-06-17T15:40:45Z) - SOS! Self-supervised Learning Over Sets Of Handled Objects In Egocentric
Action Recognition [35.4163266882568]
We introduce Self-Supervised Learning Over Sets (SOS) to pre-train a generic Objects In Contact (OIC) representation model.
Our OIC significantly boosts the performance of multiple state-of-the-art video classification models.
arXiv Detail & Related papers (2022-04-10T23:27:19Z) - Complex-Valued Autoencoders for Object Discovery [62.26260974933819]
We propose a distributed approach to object-centric representations: the Complex AutoEncoder.
We show that this simple and efficient approach achieves better reconstruction performance than an equivalent real-valued autoencoder on simple multi-object datasets.
We also show that it achieves competitive unsupervised object discovery performance to a SlotAttention model on two datasets, and manages to disentangle objects in a third dataset where SlotAttention fails - all while being 7-70 times faster to train.
arXiv Detail & Related papers (2022-04-05T09:25:28Z) - Compositional Multi-Object Reinforcement Learning with Linear Relation
Networks [38.59852895970774]
We focus on models that can learn manipulation tasks in fixed multi-object settings and extrapolate this skill zero-shot without any drop in performance when the number of objects changes.
Our approach, which scales linearly in $K$, allows agents to extrapolate and generalize zero-shot to any new object number.
arXiv Detail & Related papers (2022-01-31T17:53:30Z) - Generalization and Robustness Implications in Object-Centric Learning [23.021791024676986]
In this paper, we train state-of-the-art unsupervised models on five common multi-object datasets.
From our experimental study, we find object-centric representations to be generally useful for downstream tasks.
arXiv Detail & Related papers (2021-07-01T17:51:11Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.