Evaluating deep learning models for fault diagnosis of a rotating machinery with epistemic and aleatoric uncertainty
- URL: http://arxiv.org/abs/2412.18980v1
- Date: Wed, 25 Dec 2024 20:22:59 GMT
- Title: Evaluating deep learning models for fault diagnosis of a rotating machinery with epistemic and aleatoric uncertainty
- Authors: Reza Jalayer, Masoud Jalayer, Andrea Mor, Carlotta Orsenigo, Carlo Vercellis,
- Abstract summary: This paper presents the first comparative study of uncertainty-aware deep learning architectures for fault diagnosis in rotating machinery.
We show that deep ensemble models show superior performance, independently of the uncertainty threshold used for discrimination.
Our findings offer guidance to practitioners and researchers who have to deploy real-world uncertainty-aware fault diagnosis systems.
- Score: 1.2582887633807602
- License:
- Abstract: Uncertainty-aware deep learning (DL) models recently gained attention in fault diagnosis as a way to promote the reliable detection of faults when out-of-distribution (OOD) data arise from unseen faults (epistemic uncertainty) or the presence of noise (aleatoric uncertainty). In this paper, we present the first comprehensive comparative study of state-of-the-art uncertainty-aware DL architectures for fault diagnosis in rotating machinery, where different scenarios affected by epistemic uncertainty and different types of aleatoric uncertainty are investigated. The selected architectures include sampling by dropout, Bayesian neural networks, and deep ensembles. Moreover, to distinguish between in-distribution and OOD data in the different scenarios two uncertainty thresholds, one of which is introduced in this paper, are alternatively applied. Our empirical findings offer guidance to practitioners and researchers who have to deploy real-world uncertainty-aware fault diagnosis systems. In particular, they reveal that, in the presence of epistemic uncertainty, all DL models are capable of effectively detecting, on average, a substantial portion of OOD data across all the scenarios. However, deep ensemble models show superior performance, independently of the uncertainty threshold used for discrimination. In the presence of aleatoric uncertainty, the noise level plays an important role. Specifically, low noise levels hinder the models' ability to effectively detect OOD data. Even in this case, however, deep ensemble models exhibit a milder degradation in performance, dominating the others. These achievements, combined with their shorter inference time, make deep ensemble architectures the preferred choice.
Related papers
- Uncertainty-Aware Artificial Intelligence for Gear Fault Diagnosis in Motor Drives [0.5325390073522079]
This paper introduces a novel approach to quantify the uncertainties in fault diagnosis of motor drives using Bayesian neural networks (BNN)
BNNs treat network weights as probability distributions rather than fixed values.
It offers several advantages: improved robustness to noisy data, (b) enhanced interpretability of model predictions, and (c) the ability to quantify uncertainty in the decision-making processes.
arXiv Detail & Related papers (2024-12-02T08:38:20Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - LINe: Out-of-Distribution Detection by Leveraging Important Neurons [15.797257361788812]
We introduce a new aspect for analyzing the difference in model outputs between in-distribution data and OOD data.
We propose a novel method, Leveraging Important Neurons (LINe), for post-hoc Out of distribution detection.
arXiv Detail & Related papers (2023-03-24T13:49:05Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Benchmarking common uncertainty estimation methods with
histopathological images under domain shift and label noise [62.997667081978825]
In high-risk environments, deep learning models need to be able to judge their uncertainty and reject inputs when there is a significant chance of misclassification.
We conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole Slide Images.
We observe that ensembles of methods generally lead to better uncertainty estimates as well as an increased robustness towards domain shifts and label noise.
arXiv Detail & Related papers (2023-01-03T11:34:36Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
This paper introduces a new Bayesian deep learning framework for uncertainty quantification in segmentation neural networks.
We evaluate the proposed framework on medical image segmentation data from Magnetic Resonances Imaging and Computed Tomography scans.
Our experiments on multiple benchmark datasets demonstrate that the proposed framework is more robust to noise and adversarial attacks as compared to state-of-the-art segmentation models.
arXiv Detail & Related papers (2021-11-10T22:46:05Z) - An Uncertainty-Informed Framework for Trustworthy Fault Diagnosis in
Safety-Critical Applications [1.988145627448243]
Low trustworthiness of deep learning-based prognostic and health management (PHM) hinders its applications in safety-critical assets.
We propose an uncertainty-informed framework to diagnose faults and meanwhile detect the OOD dataset.
We show that the proposed framework is of particular advantage in tackling unknowns and enhancing the trustworthiness of fault diagnosis in safety-critical applications.
arXiv Detail & Related papers (2021-10-08T21:24:14Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - NADS: Neural Architecture Distribution Search for Uncertainty Awareness [79.18710225716791]
Machine learning (ML) systems often encounter Out-of-Distribution (OoD) errors when dealing with testing data coming from a distribution different from training data.
Existing OoD detection approaches are prone to errors and even sometimes assign higher likelihoods to OoD samples.
We propose Neural Architecture Distribution Search (NADS) to identify common building blocks among all uncertainty-aware architectures.
arXiv Detail & Related papers (2020-06-11T17:39:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.