An Uncertainty-Informed Framework for Trustworthy Fault Diagnosis in
Safety-Critical Applications
- URL: http://arxiv.org/abs/2111.00874v1
- Date: Fri, 8 Oct 2021 21:24:14 GMT
- Title: An Uncertainty-Informed Framework for Trustworthy Fault Diagnosis in
Safety-Critical Applications
- Authors: Taotao Zhou, Enrique Lopez Droguett, Ali Mosleh, Felix T.S. Chan
- Abstract summary: Low trustworthiness of deep learning-based prognostic and health management (PHM) hinders its applications in safety-critical assets.
We propose an uncertainty-informed framework to diagnose faults and meanwhile detect the OOD dataset.
We show that the proposed framework is of particular advantage in tackling unknowns and enhancing the trustworthiness of fault diagnosis in safety-critical applications.
- Score: 1.988145627448243
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: There has been a growing interest in deep learning-based prognostic and
health management (PHM) for building end-to-end maintenance decision support
systems, especially due to the rapid development of autonomous systems.
However, the low trustworthiness of PHM hinders its applications in
safety-critical assets when handling data from an unknown distribution that
differs from the training dataset, referred to as the out-of-distribution (OOD)
dataset. To bridge this gap, we propose an uncertainty-informed framework to
diagnose faults and meanwhile detect the OOD dataset, enabling the capability
of learning unknowns and achieving trustworthy fault diagnosis. Particularly,
we develop a probabilistic Bayesian convolutional neural network (CNN) to
quantify both epistemic and aleatory uncertainties in fault diagnosis. The
fault diagnosis model flags the OOD dataset with large predictive uncertainty
for expert intervention and is confident in providing predictions for the data
within tolerable uncertainty. This results in trustworthy fault diagnosis and
reduces the risk of erroneous decision-making, thus potentially avoiding
undesirable consequences. The proposed framework is demonstrated by the fault
diagnosis of bearings with three OOD datasets attributed to random number
generation, an unknown fault mode, and four common sensor faults, respectively.
The results show that the proposed framework is of particular advantage in
tackling unknowns and enhancing the trustworthiness of fault diagnosis in
safety-critical applications.
Related papers
- Trust-informed Decision-Making Through An Uncertainty-Aware Stacked Neural Networks Framework: Case Study in COVID-19 Classification [10.265080819932614]
This study presents an uncertainty-aware stacked neural networks model for the reliable classification of COVID-19 from radiological images.
The model addresses the critical gap in uncertainty-aware modeling by focusing on accurately identifying confidently correct predictions.
The architecture integrates uncertainty quantification methods, including Monte Carlo dropout and ensemble techniques, to enhance predictive reliability.
arXiv Detail & Related papers (2024-09-19T04:20:12Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - Adaptive Uncertainty Estimation via High-Dimensional Testing on Latent
Representations [28.875819909902244]
Uncertainty estimation aims to evaluate the confidence of a trained deep neural network.
Existing uncertainty estimation approaches rely on low-dimensional distributional assumptions.
We propose a new framework using data-adaptive high-dimensional hypothesis testing for uncertainty estimation.
arXiv Detail & Related papers (2023-10-25T12:22:18Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Bayesian autoencoders with uncertainty quantification: Towards
trustworthy anomaly detection [78.24964622317634]
In this work, the formulation of Bayesian autoencoders (BAEs) is adopted to quantify the total anomaly uncertainty.
To evaluate the quality of uncertainty, we consider the task of classifying anomalies with the additional option of rejecting predictions of high uncertainty.
Our experiments demonstrate the effectiveness of the BAE and total anomaly uncertainty on a set of benchmark datasets and two real datasets for manufacturing.
arXiv Detail & Related papers (2022-02-25T12:20:04Z) - Probabilistic Bearing Fault Diagnosis Using Gaussian Process with
Tailored Feature Extraction [10.064000794573756]
Rolling bearings are subject to various faults due to its long-time operation under harsh environment.
Current deep learning methods perform the bearing fault diagnosis in the form of deterministic classification.
We develop a probabilistic fault diagnosis framework that can account for the uncertainty effect in prediction.
arXiv Detail & Related papers (2021-09-19T18:34:29Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - NADS: Neural Architecture Distribution Search for Uncertainty Awareness [79.18710225716791]
Machine learning (ML) systems often encounter Out-of-Distribution (OoD) errors when dealing with testing data coming from a distribution different from training data.
Existing OoD detection approaches are prone to errors and even sometimes assign higher likelihoods to OoD samples.
We propose Neural Architecture Distribution Search (NADS) to identify common building blocks among all uncertainty-aware architectures.
arXiv Detail & Related papers (2020-06-11T17:39:07Z) - Uncertainty-Based Out-of-Distribution Classification in Deep
Reinforcement Learning [17.10036674236381]
Wrong predictions for out-of-distribution data can cause safety critical situations in machine learning systems.
We propose a framework for uncertainty-based OOD classification: UBOOD.
We show that UBOOD produces reliable classification results when combined with ensemble-based estimators.
arXiv Detail & Related papers (2019-12-31T09:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.