論文の概要: Tint Your Models Task-wise for Improved Multi-task Model Merging
- arxiv url: http://arxiv.org/abs/2412.19098v1
- Date: Thu, 26 Dec 2024 07:42:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:25:30.786765
- Title: Tint Your Models Task-wise for Improved Multi-task Model Merging
- Title(参考訳): マルチタスクモデルマージ改善のためのタスクワイズモデル
- Authors: Aecheon Jung, Seunghwan Lee, Dongyoon Han, Sungeun Hong,
- Abstract要約: 本稿では,各タスクに1つのタスク固有のレイヤをトレーニング可能な調整として導入するテストタイムアプローチであるModel Tintingを提案する。
提案手法は, 統合係数とタスク固有層を併用することにより, タスク競合を最小限のコストで効果的に軽減する。
本手法は,コンピュータビジョンと自然言語処理の両方において,最先端の性能を実現する。
- 参考スコア(独自算出の注目度): 17.496018757317824
- License:
- Abstract: Traditional model merging methods for multi-task learning (MTL) address task conflicts with straightforward strategies such as weight averaging, sign consensus, or minimal test-time adjustments. This presumably counts on the assumption that a merged encoder still retains abundant task knowledge from individual encoders, implying that its shared representation is sufficiently general across tasks. However, our insight is that adding just a single trainable task-specific layer further can bring striking performance gains, as demonstrated by our pilot study. Motivated by this finding, we propose Model Tinting, a new test-time approach that introduces a single task-specific layer for each task as trainable adjustments. Our method jointly trains merging coefficients and task-specific layers, which effectively reduces task conflicts with minimal additional costs. Additionally, we propose a sampling method that utilizes the difference in confidence levels of both merged and individual encoders. Extensive experiments demonstrate our method's effectiveness, which achieves state-of-the-art performance across both computer vision and natural language processing tasks and significantly surpasses prior works. Our code is available at https://github.com/AIM-SKKU/ModelTinting.
- Abstract(参考訳): 従来のマルチタスク学習(MTL)のモデルマージ手法は、ウェイト平均化、サインコンセンサス、最小限のテスト時間調整といった単純な戦略とタスクコンフリクトに対処する。
これはおそらく、マージエンコーダが個々のエンコーダから豊富なタスク知識を保持しているという仮定を考慮し、その共有表現がタスク全体にわたって十分に一般的なものであることを示唆している。
しかしながら、パイロット研究で実証されたように、トレーニング可能なタスク固有のレイヤをひとつ追加するだけで、パフォーマンスが大幅に向上する可能性がある、というのが私たちの洞察です。
この発見を動機として,各タスクにひとつのタスク固有のレイヤをトレーニング可能な調整として導入する,新しいテストタイムアプローチであるModel Tintingを提案する。
提案手法は, 統合係数とタスク固有層を併用することにより, タスク競合を最小限のコストで効果的に軽減する。
さらに,各エンコーダの信頼度差を利用したサンプリング手法を提案する。
コンピュータビジョンと自然言語処理の両タスクで最先端の性能を実現し,従来の作業を大幅に上回る手法の有効性を実証した。
私たちのコードはhttps://github.com/AIM-SKKU/ModelTinting.comから入手可能です。
関連論文リスト
- Task Weighting through Gradient Projection for Multitask Learning [5.5967570276373655]
マルチタスク学習では、タスク勾配間の衝突は、モデルのトレーニングパフォーマンスを劣化させる頻繁な問題である。
本研究では,タスク優先順位付けを同時に行うために,グラディエント・プロジェクション・アルゴリズムであるPCGradを適用する手法を提案する。
従来のタスクの重み付けとは違い、重み付け方式は、タスクが矛盾している場合にのみ適用されるが、トレーニングを妨げない場合にのみ適用される。
論文 参考訳(メタデータ) (2024-09-03T11:17:44Z) - An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale
Multitask Learning Systems [4.675744559395732]
マルチタスク学習は、複数のタスクから学習できるモデルが知識伝達によってより良い品質と効率を達成すると仮定する。
最先端のMLモデルは、タスクごとに高いカスタマイズに依存し、タスクの数をスケールするのではなく、サイズとデータスケールを活用する。
本稿では,大規模マルチタスクモデルを生成でき,新しいタスクの動的かつ連続的な追加を支援する進化的手法を提案する。
論文 参考訳(メタデータ) (2022-05-25T13:10:47Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing(TAPS)は、階層の小さなタスク固有のサブセットを適応的に修正することで、ベースモデルを新しいタスクにチューニングする手法である。
他の手法と比較して、TAPSはダウンストリームタスクに対して高い精度を維持し、タスク固有のパラメータは少ない。
我々は,タスクやアーキテクチャ(ResNet,DenseNet,ViT)を微調整して評価し,実装が簡単でありながら最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-03-30T23:16:07Z) - Multi-Task Learning as a Bargaining Game [63.49888996291245]
マルチタスク学習(MTL)では、複数のタスクを同時に予測するためにジョイントモデルを訓練する。
これらの異なるタスクの勾配が矛盾する可能性があるため、MTLのジョイントモデルを訓練すると、対応するシングルタスクモデルよりも低いパフォーマンスが得られる。
本稿では,パラメータ更新のジョイント方向で合意に達するためのタスクを交渉する交渉ゲームとして,勾配の組み合わせステップを考察する。
論文 参考訳(メタデータ) (2022-02-02T13:21:53Z) - Uni-Perceiver: Pre-training Unified Architecture for Generic Perception
for Zero-shot and Few-shot Tasks [73.63892022944198]
我々はUni-Perceiverという汎用認識アーキテクチャを提案する。
様々なモダリティやタスクを、統一されたモデリングと共有パラメータで処理します。
その結果、チューニングなしで事前学習したモデルは、新しいタスクでも合理的なパフォーマンスを達成できることがわかった。
論文 参考訳(メタデータ) (2021-12-02T18:59:50Z) - Conflict-Averse Gradient Descent for Multi-task Learning [56.379937772617]
マルチタスクモデルを最適化する際の大きな課題は、矛盾する勾配である。
本稿では、平均損失関数を最小化する衝突-逆勾配降下(CAGrad)を導入する。
CAGradは目標を自動的にバランスし、平均損失よりも最小限に確実に収束する。
論文 参考訳(メタデータ) (2021-10-26T22:03:51Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
シーケンスコンディショニングと重み付きサンプリングのレンズによるマルチタスク学習の実現を目指している。
合成タスクを対象とした新しいベンチマークであるMultiRavensを提案する。
次に,視覚に基づくエンドツーエンドシステムアーキテクチャであるSequence-Conditioned Transporter Networksを提案する。
論文 参考訳(メタデータ) (2021-09-15T21:19:11Z) - Rethinking Hard-Parameter Sharing in Multi-Task Learning [20.792654758645302]
マルチタスク学習(MTL)におけるハードパラメータ共有により、タスクはモデルのパラメータの一部を共有でき、ストレージコストを低減し、予測精度を向上させることができる。
共通の共有プラクティスは、タスク毎に別々のトップレイヤを使用しながら、タスク間でディープニューラルネットワークのボトムレイヤを共有することだ。
異なるボトム層パラメータを使用することで、一般的なプラクティスよりも大幅にパフォーマンスが向上する可能性がある。
論文 参考訳(メタデータ) (2021-07-23T17:26:40Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
マルチタスクモデルを開発する際の2つの一般的な課題は、しばしば文献で見過ごされる。
まず、モデルを本質的に漸進的に可能にし、以前に学んだことを忘れずに新しいタスクから情報を継続的に取り入れる(インクリメンタルラーニング)。
第二に、タスク間の有害な相互作用を排除し、マルチタスク設定(タスク干渉)においてシングルタスクのパフォーマンスを著しく低下させることが示されている。
論文 参考訳(メタデータ) (2020-07-24T14:44:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。