論文の概要: SyMerge: From Non-Interference to Synergistic Merging via Single-Layer Adaptation
- arxiv url: http://arxiv.org/abs/2412.19098v3
- Date: Sat, 04 Oct 2025 09:36:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 14:28:09.188052
- Title: SyMerge: From Non-Interference to Synergistic Merging via Single-Layer Adaptation
- Title(参考訳): SyMerge: 単層適応による非干渉からシナジスティックマージへ
- Authors: Aecheon Jung, Seunghwan Lee, Dongyoon Han, Sungeun Hong,
- Abstract要約: SyMergeは1つのタスク固有のレイヤとマージ係数を共同で最適化する軽量フレームワークである。
SyMergeは、ビジョン、密度予測、NLPベンチマークを越えて最先端の結果を達成する。
- 参考スコア(独自算出の注目度): 28.417947631789783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model merging offers an efficient alternative to multi-task learning by combining independently fine-tuned models, but most prior approaches focus mainly on avoiding task interference. We argue instead that the real potential of merging lies in achieving synergy, where tasks enhance one another. Our intuition comes from a pilot study showing that when a classifier trained on one task is paired with the encoder of another, the resulting cross-task performance strongly predicts merge quality. Moreover, adapting even a single task-specific layer can substantially improve this compatibility, suggesting a simple yet powerful lever for synergy. Building on this insight, we introduce SyMerge, a lightweight framework that jointly optimizes one task-specific layer and merging coefficients. To ensure stability without labels, SyMerge employs a robust self-labeling strategy guided by expert model predictions, avoiding the pitfalls of entropy-based adaptation. This minimalist yet principled design achieves state-of-the-art results across vision, dense prediction, and NLP benchmarks, while also producing adapted layers that transfer effectively to other merging methods. Our code is available at https://aim-skku.github.io/SyMerge/
- Abstract(参考訳): モデルマージは、個別に微調整されたモデルを組み合わせることで、マルチタスク学習の効率的な代替手段を提供するが、従来のアプローチは主にタスク干渉を避けることに焦点を当てている。
むしろ、統合の本当の可能性は、タスクが互いに強化される相乗効果を達成することにある、と我々は主張する。
私たちの直感は、あるタスクで訓練された分類器が別のタスクのエンコーダとペアリングされた場合、その結果のクロスタスク性能がマージ品質を強く予測することを示すパイロットスタディから来ています。
さらに、単一のタスク固有の層にも適応することで、この互換性を大幅に改善できるため、シナジーのためのシンプルで強力なレバーが提案される。
この洞察に基づいて、ひとつのタスク固有のレイヤとマージ係数を共同で最適化する軽量フレームワークであるSyMergeを紹介します。
ラベルなしで安定性を確保するため、SyMergeはエキスパートモデル予測によって導かれる堅牢な自己ラベル戦略を採用し、エントロピーベースの適応の落とし穴を避ける。
この最小限の設計は、ビジョン、密度予測、NLPベンチマークをまたいだ最先端の結果を達成すると同時に、他のマージメソッドに効果的に転送する適応されたレイヤを生成する。
私たちのコードはhttps://aim-skku.github.io/SyMerge/で利用可能です。
関連論文リスト
- Navigating the Accuracy-Size Trade-Off with Flexible Model Merging [16.936134010292232]
我々は、新しいデータフリーモデルマージフレームワークFlexMergeを提案する。
比較的大きなマージモデルであっても、単一のモデルよりもかなり精度が向上できることが示される。
FlexMergeは、融合モデルサイズのきめ細かい制御を提供することで、柔軟でデータフリーで高性能なソリューションを提供します。
論文 参考訳(メタデータ) (2025-05-29T07:50:32Z) - Unifying Multimodal Large Language Model Capabilities and Modalities via Model Merging [103.98582374569789]
モデルマージは、複数のエキスパートモデルを単一のモデルにまとめることを目的としており、ストレージとサービスコストを削減している。
これまでの研究は主に、コードと数学のタスクに視覚分類モデルやLLM(Large Language Models)を統合することに焦点を当ててきた。
本稿では,VQA,Geometry,Chart,OCR,Gundingといった複数のタスクを含むMLLMのモデルマージベンチマークを紹介する。
論文 参考訳(メタデータ) (2025-05-26T12:23:14Z) - No Task Left Behind: Isotropic Model Merging with Common and Task-Specific Subspaces [17.69597528370121]
モデルマージは、複数のタスク固有のモデルの重みを単一のマルチタスクモデルに統合する。
この問題に対する最近の関心にもかかわらず、シングルタスクモデルと組み合わせたモデルの間には大きなパフォーマンスギャップが残っている。
タスク固有成分とマージ行列の特異成分のアライメントは,性能改善と強く相関していることを示す。
論文 参考訳(メタデータ) (2025-02-07T14:22:56Z) - Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent [74.02034188307857]
複数のエキスパートモデルをマージすることは、元のデータにアクセスせずにマルチタスク学習を実行するための有望なアプローチを提供する。
既存の手法は必然的にタスク固有の情報を破棄し、競合の原因となっているが、パフォーマンスには不可欠である。
我々の手法は従来の手法より一貫して優れており、視覚領域とNLP領域の両方において様々なアーキテクチャやタスクにまたがって最先端の結果が得られます。
論文 参考訳(メタデータ) (2025-01-02T12:45:21Z) - SuperMerge: An Approach For Gradient-Based Model Merging [9.136320029568305]
ChatGPT、Claude、LLaMAといった大規模な言語モデルは巨大なモノリシックで、何千ものタスクを同時にサポートする超能力を持っている。
タスク固有のモデルを使用する場合の課題のひとつは、モデルが既存のタスクにすでにデプロイされている後、新しいタスクを解決するための漸進的な必要性である。
SuPERMERGEと呼ばれるモデルマージ方式を提案する。
SuPERMERGEは、自然言語処理やコンピュータビジョンタスクにおいて、既存のモデルマージ手法よりも優れていることを実験的に実証した。
論文 参考訳(メタデータ) (2024-12-09T20:03:14Z) - Optimizing Dense Visual Predictions Through Multi-Task Coherence and Prioritization [7.776434991976473]
マルチタスク学習(MTL)は、複数のタスクの同時トレーニングを含む。
本稿では,高密度視覚タスクに特化して設計された高度MTLモデルを提案する。
論文 参考訳(メタデータ) (2024-12-04T10:05:47Z) - Task Weighting through Gradient Projection for Multitask Learning [5.5967570276373655]
マルチタスク学習では、タスク勾配間の衝突は、モデルのトレーニングパフォーマンスを劣化させる頻繁な問題である。
本研究では,タスク優先順位付けを同時に行うために,グラディエント・プロジェクション・アルゴリズムであるPCGradを適用する手法を提案する。
従来のタスクの重み付けとは違い、重み付け方式は、タスクが矛盾している場合にのみ適用されるが、トレーニングを妨げない場合にのみ適用される。
論文 参考訳(メタデータ) (2024-09-03T11:17:44Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
本稿では,Adaptive Model Merging (AdaMerging)と呼ばれる革新的な手法を紹介する。
本来のトレーニングデータに頼ることなく、タスクレベルでも階層的にも、モデルマージの係数を自律的に学習することを目指している。
AdaMergingは、現在の最先端のタスク演算のマージ方式と比較すると、パフォーマンスが11%向上している。
論文 参考訳(メタデータ) (2023-10-04T04:26:33Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
本稿では、複数の視覚タスクを実行でき、他の下流タスクに効率的に適応できるモデルを提案する。
提案手法は,単一タスク状態モデルに匹敵する結果を達成し,下流タスクの強力な一般化を実証する。
論文 参考訳(メタデータ) (2023-06-29T17:59:57Z) - ZipIt! Merging Models from Different Tasks without Training [20.2479633507354]
ZipIt!」は、同じアーキテクチャの2つの任意のモデルをマージする一般的な方法である。
これら2つの変更が組み合わさって、以前の作業よりも20~60%改善されていることが分かりました。
論文 参考訳(メタデータ) (2023-05-04T17:59:58Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing(TAPS)は、階層の小さなタスク固有のサブセットを適応的に修正することで、ベースモデルを新しいタスクにチューニングする手法である。
他の手法と比較して、TAPSはダウンストリームタスクに対して高い精度を維持し、タスク固有のパラメータは少ない。
我々は,タスクやアーキテクチャ(ResNet,DenseNet,ViT)を微調整して評価し,実装が簡単でありながら最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-03-30T23:16:07Z) - Multi-Task Learning as a Bargaining Game [63.49888996291245]
マルチタスク学習(MTL)では、複数のタスクを同時に予測するためにジョイントモデルを訓練する。
これらの異なるタスクの勾配が矛盾する可能性があるため、MTLのジョイントモデルを訓練すると、対応するシングルタスクモデルよりも低いパフォーマンスが得られる。
本稿では,パラメータ更新のジョイント方向で合意に達するためのタスクを交渉する交渉ゲームとして,勾配の組み合わせステップを考察する。
論文 参考訳(メタデータ) (2022-02-02T13:21:53Z) - Uni-Perceiver: Pre-training Unified Architecture for Generic Perception
for Zero-shot and Few-shot Tasks [73.63892022944198]
我々はUni-Perceiverという汎用認識アーキテクチャを提案する。
様々なモダリティやタスクを、統一されたモデリングと共有パラメータで処理します。
その結果、チューニングなしで事前学習したモデルは、新しいタスクでも合理的なパフォーマンスを達成できることがわかった。
論文 参考訳(メタデータ) (2021-12-02T18:59:50Z) - Conflict-Averse Gradient Descent for Multi-task Learning [56.379937772617]
マルチタスクモデルを最適化する際の大きな課題は、矛盾する勾配である。
本稿では、平均損失関数を最小化する衝突-逆勾配降下(CAGrad)を導入する。
CAGradは目標を自動的にバランスし、平均損失よりも最小限に確実に収束する。
論文 参考訳(メタデータ) (2021-10-26T22:03:51Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
シーケンスコンディショニングと重み付きサンプリングのレンズによるマルチタスク学習の実現を目指している。
合成タスクを対象とした新しいベンチマークであるMultiRavensを提案する。
次に,視覚に基づくエンドツーエンドシステムアーキテクチャであるSequence-Conditioned Transporter Networksを提案する。
論文 参考訳(メタデータ) (2021-09-15T21:19:11Z) - Rethinking Hard-Parameter Sharing in Multi-Task Learning [20.792654758645302]
マルチタスク学習(MTL)におけるハードパラメータ共有により、タスクはモデルのパラメータの一部を共有でき、ストレージコストを低減し、予測精度を向上させることができる。
共通の共有プラクティスは、タスク毎に別々のトップレイヤを使用しながら、タスク間でディープニューラルネットワークのボトムレイヤを共有することだ。
異なるボトム層パラメータを使用することで、一般的なプラクティスよりも大幅にパフォーマンスが向上する可能性がある。
論文 参考訳(メタデータ) (2021-07-23T17:26:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。