論文の概要: Reversed in Time: A Novel Temporal-Emphasized Benchmark for Cross-Modal Video-Text Retrieval
- arxiv url: http://arxiv.org/abs/2412.19178v1
- Date: Thu, 26 Dec 2024 11:32:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:29:37.315560
- Title: Reversed in Time: A Novel Temporal-Emphasized Benchmark for Cross-Modal Video-Text Retrieval
- Title(参考訳): Reversed in Time: クロスモーダルビデオテキスト検索のための新しいテンポラル強調ベンチマーク
- Authors: Yang Du, Yuqi Liu, Qin Jin,
- Abstract要約: クロスモーダル検索(例えば、画像テキスト、ビデオテキスト)は、情報検索およびマルチモーダル視覚言語理解分野において重要なタスクである。
本稿では,新しい時間強調ビデオテキスト検索データセットRTimeを紹介する。
私たちのRTimeデータセットは、現在1ビデオにつき10キャプションの21Kビデオで構成されており、合計で約122時間です。
- 参考スコア(独自算出の注目度): 56.05621657583251
- License:
- Abstract: Cross-modal (e.g. image-text, video-text) retrieval is an important task in information retrieval and multimodal vision-language understanding field. Temporal understanding makes video-text retrieval more challenging than image-text retrieval. However, we find that the widely used video-text benchmarks have shortcomings in comprehensively assessing abilities of models, especially in temporal understanding, causing large-scale image-text pre-trained models can already achieve comparable zero-shot performance with video-text pre-trained models. In this paper, we introduce RTime, a novel temporal-emphasized video-text retrieval dataset. We first obtain videos of actions or events with significant temporality, and then reverse these videos to create harder negative samples. We then recruit annotators to judge the significance and reversibility of candidate videos, and write captions for qualified videos. We further adopt GPT-4 to extend more captions based on human-written captions. Our RTime dataset currently consists of 21k videos with 10 captions per video, totalling about 122 hours. Based on RTime, we propose three retrieval benchmark tasks: RTime-Origin, RTime-Hard, and RTime-Binary. We further enhance the use of harder-negatives in model training, and benchmark a variety of video-text models on RTime. Extensive experiment analysis proves that RTime indeed poses new and higher challenges to video-text retrieval. We release our RTime dataset\footnote{\url{https://github.com/qyr0403/Reversed-in-Time}} to further advance video-text retrieval and multimodal understanding research.
- Abstract(参考訳): クロスモーダル(例えば、画像テキスト、ビデオテキスト)検索は、情報検索およびマルチモーダル視覚言語理解分野において重要な課題である。
時間的理解により、画像テキスト検索よりもビデオテキスト検索が困難になる。
しかし,広範に使用されているビデオテキストベンチマークは,特に時間的理解において,モデルの能力を総合的に評価する上で欠点があることが判明し,大規模な画像テキスト事前学習モデルでは,ビデオテキスト事前学習モデルと同等のゼロショット性能が得られることがわかった。
本稿では,新しい時間強調ビデオテキスト検索データセットであるRTimeを紹介する。
まず、時間的に重要なアクションやイベントのビデオを取得し、その後、これらのビデオを逆転して、より厳しいネガティブなサンプルを作成します。
次に、アノテータを雇い、候補ビデオの重要性と可逆性を判断し、資格あるビデオのキャプションを書く。
我々はさらにGPT-4を採用し、人書きキャプションに基づいてより多くのキャプションを拡張する。
私たちのRTimeデータセットは、現在1ビデオにつき10キャプションの21Kビデオで構成されており、合計で約122時間です。
RTimeに基づいて,RTime-Origin,RTime-Hard,RTime-Binaryの3つの検索ベンチマークタスクを提案する。
モデルトレーニングにおけるハードネガティブの使用をさらに強化し、RTime上で様々なビデオテキストモデルをベンチマークする。
大規模な実験分析は、RTimeがビデオテキスト検索に新たな、より高い課題をもたらすことを証明している。
我々は、ビデオテキスト検索とマルチモーダル理解研究をさらに進めるために、RTimeのデータセットを公開しています。
関連論文リスト
- A Large Cross-Modal Video Retrieval Dataset with Reading Comprehension [49.74647080936875]
テキスト読解機能を備えた大規模・クロスモーダルなビデオ検索データセットであるTextVRを紹介した。
提案したTextVRでは,テキストを認識し,理解し,視覚的コンテキストに関連づけ,ビデオ検索作業に不可欠なテキスト意味情報を決定するために,一種類のクロスモーダルモデルが必要である。
論文 参考訳(メタデータ) (2023-05-05T08:00:14Z) - Hierarchical Video-Moment Retrieval and Step-Captioning [68.4859260853096]
HiRESTは、インストラクショナルビデオデータセットから3.4Kのテキストビデオペアで構成されている。
我々の階層的ベンチマークは、ビデオ検索、モーメント検索、2つの新しいモーメントセグメンテーション、ステップキャプションタスクからなる。
論文 参考訳(メタデータ) (2023-03-29T02:33:54Z) - Towards Generalisable Video Moment Retrieval: Visual-Dynamic Injection
to Image-Text Pre-Training [70.83385449872495]
映像モーメント検索(VMR)における視覚とテキストの相関
既存の方法は、視覚的およびテキスト的理解のために、個別の事前学習機能抽出器に依存している。
本稿では,映像モーメントの理解を促進するために,ビジュアルダイナミックインジェクション(Visual-Dynamic Injection, VDI)と呼ばれる汎用手法を提案する。
論文 参考訳(メタデータ) (2023-02-28T19:29:05Z) - Temporal Perceiving Video-Language Pre-training [112.1790287726804]
本研究は、時間的・意味的な微粒なアライメントを可能にする、新しいテキスト-ビデオのローカライゼーション・プレテキストタスクを導入する。
具体的には、テキスト-ビデオのローカライゼーションは、テキスト記述が与えられたビデオの開始と終了の境界を予測するモーメント検索から成っている。
提案手法は,細粒度フレーム表現と単語表現を結合し,単一モードにおける異なるインスタンスの表現を暗黙的に区別する。
論文 参考訳(メタデータ) (2023-01-18T12:15:47Z) - HiTeA: Hierarchical Temporal-Aware Video-Language Pre-training [49.52679453475878]
本稿では,モーメントとテキスト間の相互アライメントをモデル化するための時間対応ビデオ言語事前学習フレームワークHiTeAを提案する。
15の精確なビデオ言語理解と生成タスクに関する最先端の成果を得た。
論文 参考訳(メタデータ) (2022-12-30T04:27:01Z) - BridgeFormer: Bridging Video-text Retrieval with Multiple Choice
Questions [38.843518809230524]
我々は、Multiple Choice Questions (MCQ) と呼ばれる新しいプレテキストタスクを導入する。
BridgeFormerモジュールは、ビデオ機能に頼ってテキスト機能によって構築された"クエスト"に答えるように訓練されている。
質問や回答の形式では、ローカルなビデオテキストの特徴間の意味的関連を適切に確立することができる。
提案手法は,5つのデータセットにおいて,人気テキスト・ビデオ検索タスクにおける最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2022-01-13T09:33:54Z) - CLIP2Video: Mastering Video-Text Retrieval via Image CLIP [13.270902407320005]
本稿では、CLIP2Videoネットワークを用いて、画像言語学習モデルをエンドツーエンドでビデオテキスト検索に転送する。
我々は,テキスト・ツー・ビデオ・トゥ・テキスト・検索ベンチマークにおいて,徹底的なアブレーション研究を行い,最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-06-21T13:30:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。