Federated Hybrid Training and Self-Adversarial Distillation: Towards Robust Edge Networks
- URL: http://arxiv.org/abs/2412.19354v1
- Date: Thu, 26 Dec 2024 21:32:08 GMT
- Title: Federated Hybrid Training and Self-Adversarial Distillation: Towards Robust Edge Networks
- Authors: Yu Qiao, Apurba Adhikary, Kitae Kim, Eui-Nam Huh, Zhu Han, Choong Seon Hong,
- Abstract summary: Federated learning (FL) is a distributed training technology that enhances data privacy in mobile edge networks.
We propose Federated hyBrid Adversarial training and self-adversarial disTillation (FedBAT)
FedBAT integrates hybrid adversarial training and self-adversarial distillation into the conventional FL framework.
- Score: 43.723206630188656
- License:
- Abstract: Federated learning (FL) is a distributed training technology that enhances data privacy in mobile edge networks by allowing data owners to collaborate without transmitting raw data to the edge server. However, data heterogeneity and adversarial attacks pose challenges to develop an unbiased and robust global model for edge deployment. To address this, we propose Federated hyBrid Adversarial training and self-adversarial disTillation (FedBAT), a new framework designed to improve both robustness and generalization of the global model. FedBAT seamlessly integrates hybrid adversarial training and self-adversarial distillation into the conventional FL framework from data augmentation and feature distillation perspectives. From a data augmentation perspective, we propose hybrid adversarial training to defend against adversarial attacks by balancing accuracy and robustness through a weighted combination of standard and adversarial training. From a feature distillation perspective, we introduce a novel augmentation-invariant adversarial distillation method that aligns local adversarial features of augmented images with their corresponding unbiased global clean features. This alignment can effectively mitigate bias from data heterogeneity while enhancing both the robustness and generalization of the global model. Extensive experimental results across multiple datasets demonstrate that FedBAT yields comparable or superior performance gains in improving robustness while maintaining accuracy compared to several baselines.
Related papers
- Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks [3.536605202672355]
Federated learning enables edge devices to collaboratively train a global model while maintaining data privacy by keeping data localized.
We propose a novel plugin for federated optimization techniques that approximates Non-IID data distributions to IID through generative AI-enhanced data augmentation and balanced sampling strategy.
arXiv Detail & Related papers (2024-10-31T11:13:47Z) - On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness [16.595935469099306]
We propose FLAME, an optimization framework by utilizing the alternating direction method of multipliers (ADMM) to train personalized and global models.
Our theoretical analysis establishes the global convergence and two kinds of convergence rates for FLAME under mild assumptions.
Our experimental findings show that FLAME outperforms state-of-the-art methods in convergence and accuracy, and it achieves higher test accuracy under various attacks.
arXiv Detail & Related papers (2024-07-23T11:35:42Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Logit Calibration and Feature Contrast for Robust Federated Learning on Non-IID Data [45.11652096723593]
Federated learning (FL) is a privacy-preserving distributed framework for collaborative model training on devices in edge networks.
This paper proposes FatCC, which incorporates local logit underlineCalibration and global feature underlineContrast into the vanilla federated adversarial training process from both logit and feature perspectives.
arXiv Detail & Related papers (2024-04-10T06:35:25Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - FedRAD: Federated Robust Adaptive Distillation [7.775374800382709]
Collaborative learning framework by typically aggregating model updates is vulnerable to model poisoning attacks from adversarial clients.
We propose a novel robust aggregation method, Federated Robust Adaptive Distillation (FedRAD), to detect adversaries and robustly aggregate local models.
The results show that FedRAD outperforms all other aggregators in the presence of adversaries, as well as in heterogeneous data distributions.
arXiv Detail & Related papers (2021-12-02T16:50:57Z) - Guided Interpolation for Adversarial Training [73.91493448651306]
As training progresses, the training data becomes less and less attackable, undermining the robustness enhancement.
We propose the guided framework (GIF), which employs the previous epoch's meta information to guide the data's adversarial variants.
Compared with the vanilla mixup, the GIF can provide a higher ratio of attackable data, which is beneficial to the robustness enhancement.
arXiv Detail & Related papers (2021-02-15T03:55:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.