Minimal Batch Adaptive Learning Policy Engine for Real-Time Mid-Price Forecasting in High-Frequency Trading
- URL: http://arxiv.org/abs/2412.19372v2
- Date: Mon, 30 Dec 2024 23:48:35 GMT
- Title: Minimal Batch Adaptive Learning Policy Engine for Real-Time Mid-Price Forecasting in High-Frequency Trading
- Authors: Adamantios Ntakaris, Gbenga Ibikunle,
- Abstract summary: We present a novel approach to mid-price forecasting using Level 1 limit order book (LOB) data from NASDAQ.
We introduce the Adaptive Learning Policy Engine (ALPE) - a reinforcement learning (RL)-based agent designed for batch-free, immediate mid-price forecasting.
- Score: 1.7802147489386628
- License:
- Abstract: High-frequency trading (HFT) has transformed modern financial markets, making reliable short-term price forecasting models essential. In this study, we present a novel approach to mid-price forecasting using Level 1 limit order book (LOB) data from NASDAQ, focusing on 100 U.S. stocks from the S&P 500 index during the period from September to November 2022. Expanding on our previous work with Radial Basis Function Neural Networks (RBFNN), which leveraged automated feature importance techniques based on mean decrease impurity (MDI) and gradient descent (GD), we introduce the Adaptive Learning Policy Engine (ALPE) - a reinforcement learning (RL)-based agent designed for batch-free, immediate mid-price forecasting. ALPE incorporates adaptive epsilon decay to dynamically balance exploration and exploitation, outperforming a diverse range of highly effective machine learning (ML) and deep learning (DL) models in forecasting performance.
Related papers
- GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets [0.0]
We present a new, hybrid Deep Learning model that captures and forecasting market volatility more accurately than either class of models are capable of on their own.
When compared to other time series models, GINN showed superior out-of-sample prediction performance in terms of the Coefficient of Determination ($R2$), Mean Squared Error (MSE), and Mean Absolute Error (MAE)
arXiv Detail & Related papers (2024-09-30T23:53:54Z) - Stock Price Prediction and Traditional Models: An Approach to Achieve Short-, Medium- and Long-Term Goals [0.0]
A comparative analysis of deep learning models and traditional statistical methods for stock price prediction uses data from the Nigerian stock exchange.
Deep learning models, particularly LSTM, outperform traditional methods by capturing complex, nonlinear patterns in the data.
The findings highlight the potential of deep learning for improving financial forecasting and investment strategies.
arXiv Detail & Related papers (2024-09-29T11:20:20Z) - An Evaluation of Deep Learning Models for Stock Market Trend Prediction [0.3277163122167433]
This study investigates the efficacy of advanced deep learning models for short-term trend forecasting using daily and hourly closing prices from the S&P 500 index and the Brazilian ETF EWZ.
We introduce the Extended Long Short-Term Memory for Time Series (xLSTM-TS) model, an xLSTM adaptation optimised for time series prediction.
Among the models tested, xLSTM-TS consistently outperformed others. For example, it achieved a test accuracy of 72.82% and an F1 score of 73.16% on the EWZ daily dataset.
arXiv Detail & Related papers (2024-08-22T13:58:55Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Gated recurrent neural network with TPE Bayesian optimization for enhancing stock index prediction accuracy [0.0]
The aim is to improve the prediction accuracy of the next day's closing price of the NIFTY 50 index, a prominent Indian stock market index.
A combination of eight influential factors is carefully chosen from fundamental stock data, technical indicators, crude oil price, and macroeconomic data to train the models.
arXiv Detail & Related papers (2024-06-02T06:39:01Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Forecasting Commodity Prices Using Long Short-Term Memory Neural
Networks [0.0]
This paper applies a recurrent neural network (RNN) method to forecast cotton and oil prices.
We show that machine learning methods fit reasonably well the data but do not outperform systematically classical methods.
arXiv Detail & Related papers (2021-01-08T16:28:19Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.