Fully Data-driven but Interpretable Human Behavioural Modelling with Differentiable Discrete Choice Model
- URL: http://arxiv.org/abs/2412.19403v2
- Date: Wed, 08 Jan 2025 02:43:21 GMT
- Title: Fully Data-driven but Interpretable Human Behavioural Modelling with Differentiable Discrete Choice Model
- Authors: Fumiyasu Makinoshima, Tatsuya Mitomi, Fumiya Makihara, Eigo Segawa,
- Abstract summary: We introduce Diff-DCM, a fully data-driven method for the interpretable modelling, learning, prediction, and control of human behaviours.
Experiments demonstrate that Diff-DCM can be applied to various types of data and requires only a small amount of computational resources.
This study provides a strong basis for the fully automated and reliable modelling, prediction, and control of human behaviours.
- Score: 0.0
- License:
- Abstract: Discrete choice models are essential for modelling various decision-making processes in human behaviour. However, the specification of these models has depended heavily on domain knowledge from experts, and the fully automated but interpretable modelling of complex human behaviours has been a long-standing challenge. In this paper, we introduce the differentiable discrete choice model (Diff-DCM), a fully data-driven method for the interpretable modelling, learning, prediction, and control of complex human behaviours, which is realised by differentiable programming. Solely from input features and choice outcomes without any prior knowledge, Diff-DCM can estimate interpretable closed-form utility functions that reproduce observed behaviours. Comprehensive experiments with both synthetic and real-world data demonstrate that Diff-DCM can be applied to various types of data and requires only a small amount of computational resources for the estimations, which can be completed within tens of seconds on a laptop without any accelerators. In these experiments, we also demonstrate that, using its differentiability, Diff-DCM can provide useful insights into human behaviours, such as an optimal intervention path for effective behavioural changes. This study provides a strong basis for the fully automated and reliable modelling, prediction, and control of human behaviours.
Related papers
- Uncertainty-aware Human Mobility Modeling and Anomaly Detection [28.311683535974634]
We study how to model human agents' mobility behavior toward effective anomaly detection.
We use GPS data as a sequence stay-point events, each with a set of characterizingtemporal features.
Experiments on large expert-simulated datasets with tens of thousands of agents demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2024-10-02T06:57:08Z) - AlignDiff: Aligning Diverse Human Preferences via Behavior-Customisable
Diffusion Model [69.12623428463573]
AlignDiff is a novel framework to quantify human preferences, covering abstractness, and guide diffusion planning.
It can accurately match user-customized behaviors and efficiently switch from one to another.
We demonstrate its superior performance on preference matching, switching, and covering compared to other baselines.
arXiv Detail & Related papers (2023-10-03T13:53:08Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
We conduct a systematic comparison of different modelling approaches, across multiple modelling problems, in terms of the key factors likely to affect model choice.
Results indicate that the models with the highest disaggregate predictive performance provide poorer estimates of behavioural indicators and aggregate mode shares.
It is also observed that the MNL model performs robustly in a variety of situations, though ML techniques can improve the estimates of behavioural indices such as Willingness to Pay.
arXiv Detail & Related papers (2023-01-11T11:10:32Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Explainable Human-in-the-loop Dynamic Data-Driven Digital Twins [6.657586324950896]
Digital Twins (DT) are essentially Dynamic Data-driven models that serve as real-time symbiotic "virtual replicas" of real-world systems.
This paper is an approach to harnessing explainability in human-in-the-loop DDDAS and DT systems, leveraging bidirectional symbiotic sensing feedback.
arXiv Detail & Related papers (2022-07-19T07:15:12Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Model-agnostic Fits for Understanding Information Seeking Patterns in
Humans [0.0]
In decision making tasks under uncertainty, humans display characteristic biases in seeking, integrating, and acting upon information relevant to the task.
Here, we reexamine data from previous carefully designed experiments, collected at scale, that measured and catalogued these biases in aggregate form.
We design deep learning models that replicate these biases in aggregate, while also capturing individual variation in behavior.
arXiv Detail & Related papers (2020-12-09T04:34:58Z) - Multimodal Deep Generative Models for Trajectory Prediction: A
Conditional Variational Autoencoder Approach [34.70843462687529]
We provide a self-contained tutorial on a conditional variational autoencoder approach to human behavior prediction.
The goals of this tutorial paper are to review and build a taxonomy of state-of-the-art methods in human behavior prediction.
arXiv Detail & Related papers (2020-08-10T03:18:27Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.