論文の概要: Residual Feature-Reutilization Inception Network for Image Classification
- arxiv url: http://arxiv.org/abs/2412.19433v1
- Date: Fri, 27 Dec 2024 03:55:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:28:48.655246
- Title: Residual Feature-Reutilization Inception Network for Image Classification
- Title(参考訳): 画像分類のための残像再活用インセプションネットワーク
- Authors: Yuanpeng He, Wenjie Song, Lijian Li, Tianxiang Zhan, Wenpin Jiao,
- Abstract要約: 特徴情報の効果的取得はコンピュータビジョンの分野において非常に重要である。
本稿では,ResFRI(ResFRI)やSplit-ResFRI(Split-ResFRI)からなる新しいCNNアーキテクチャを提案する。
我々は, モデルサイズが近似的であり, 追加データを使用しないという前提の下で, 他の近代モデルと比較して, 最先端の結果を得る。
- 参考スコア(独自算出の注目度): 1.7200496706831436
- License:
- Abstract: Capturing feature information effectively is of great importance in the field of computer vision. With the development of convolutional neural networks (CNNs), concepts like residual connection and multiple scales promote continual performance gains in diverse deep learning vision tasks. In this paper, we propose a novel CNN architecture that it consists of residual feature-reutilization inceptions (ResFRI) or split-residual feature-reutilization inceptions (Split-ResFRI). And it is composed of four convolutional combinations of different structures connected by specially designed information interaction passages, which are utilized to extract multi-scale feature information and effectively increase the receptive field of the model. Moreover, according to the network structure designed above, Split-ResFRI can adjust the segmentation ratio of the input information, thereby reducing the number of parameters and guaranteeing the model performance. Specifically, in experiments based on popular vision datasets, such as CIFAR10 ($97.94$\%), CIFAR100 ($85.91$\%) and Tiny Imagenet ($70.54$\%), we obtain state-of-the-art results compared with other modern models under the premise that the model size is approximate and no additional data is used.
- Abstract(参考訳): 特徴情報の効果的取得はコンピュータビジョンの分野において非常に重要である。
畳み込みニューラルネットワーク(CNN)の開発により、残差接続や多重スケールといった概念は、多様なディープラーニングビジョンタスクにおける連続的なパフォーマンス向上を促進する。
本稿では,ResFRI(ResFRI)やSplit-ResFRI(Split-ResFRI)からなる新しいCNNアーキテクチャを提案する。
また, 特殊設計された情報相互作用経路によって接続された異なる構造の4つの畳み込み結合で構成され, マルチスケールの特徴情報を抽出し, モデルの受容場を効果的に増大させる。
さらに、上述したネットワーク構造により、Split-ResFRIは入力情報のセグメンテーション比を調整でき、パラメータの数を減らし、モデル性能を保証できる。
具体的には、CIFAR10(97.94$\%)、CIFAR100(85.91$\%)、Tiny Imagenet(70.54$\%)といった一般的なビジョンデータセットに基づく実験では、モデルサイズが近似的であり、追加データを使用しないという前提の下で、最先端の結果が得られる。
関連論文リスト
- Enhanced Convolutional Neural Networks for Improved Image Classification [0.40964539027092917]
CIFAR-10は、小規模のマルチクラスデータセットの分類モデルの性能を評価するために広く使用されているベンチマークである。
本稿では,より深い畳み込みブロック,バッチ正規化,ドロップアウト正規化を統合したCNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-02-02T04:32:25Z) - Efficient and Accurate Hyperspectral Image Demosaicing with Neural Network Architectures [3.386560551295746]
本研究では,ハイパースペクトル画像復調におけるニューラルネットワークアーキテクチャの有効性について検討した。
様々なネットワークモデルと修正を導入し、それらを従来の手法や既存の参照ネットワークアプローチと比較する。
その結果、我々のネットワークは、例外的な性能を示す両方のデータセットにおいて、参照モデルよりも優れるか、一致していることがわかった。
論文 参考訳(メタデータ) (2023-12-21T08:02:49Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Efficient Scopeformer: Towards Scalable and Rich Feature Extraction for
Intracranial Hemorrhage Detection [0.7734726150561088]
ScopeformerはCT画像における頭蓋内出血分類のための新しいマルチCNN-ViTモデルである。
本稿では,CNN生成特徴間の冗長性を低減し,ViTの入力サイズを制御するための効果的な特徴投影法を提案する。
様々なスコープフォーマーモデルによる実験により、モデルの性能は特徴抽出器で使用される畳み込みブロックの数に比例することが示された。
論文 参考訳(メタデータ) (2023-02-01T03:51:27Z) - GoogLe2Net: Going Transverse with Convolutions [0.0]
本稿では,GoogLe2Netと呼ばれる新しいCNNアーキテクチャを提案する。
ResFRI(Reslit Feature Reutilization Inception)またはSplit-ResFRI(Split Feature Reutilization Inception)から構成される。
当社のGoogLe2Netは、畳み込みレイヤのグループによってキャプチャされた情報を再利用し、きめ細かいレベルでマルチスケールの機能を表現することができます。
論文 参考訳(メタデータ) (2023-01-01T15:16:10Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
本稿では,属性の全体的推定に使用できるニューラルネットワーク表現モデルを提案する。
実験の結果,提案するフレームワークは,セルアーキテクチャとディープニューラルネットワーク全体の遅延特性と精度特性を予測できることがわかった。
論文 参考訳(メタデータ) (2022-11-15T10:15:21Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
本稿では,畳み込み型アーキテクチャサーチ(VTCAS)を用いたアーキテクチャ探索手法を提案する。
VTCASによって探索された高性能バックボーンネットワークは、畳み込みニューラルネットワークの望ましい特徴をトランスフォーマーアーキテクチャに導入する。
これは、特に低照度屋内シーンにおいて、物体認識のためのニューラルネットワークの堅牢性を高める。
論文 参考訳(メタデータ) (2022-03-20T02:59:51Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
本稿では,高品質(本社)画像再構成のために,異なる状態の情報をどのように組み合わせるべきかを学習するディープインターリーブドネットワーク(DIN)を提案する。
本稿では,各インターリーブノードにアタッチメントされた非対称なコアテンション(AsyCA)を提案し,その特性依存性をモデル化する。
提案したDINはエンドツーエンドで訓練でき、様々な画像復元タスクに適用できる。
論文 参考訳(メタデータ) (2020-10-29T15:32:00Z) - Sequential Hierarchical Learning with Distribution Transformation for
Image Super-Resolution [83.70890515772456]
画像SRのための逐次階層学習型超解像ネットワーク(SHSR)を構築した。
特徴のスケール間相関を考察し、階層的情報を段階的に探索するシーケンシャルなマルチスケールブロック(SMB)を考案する。
実験結果から,SHSRは最先端手法に優れた定量的性能と視覚的品質が得られることが示された。
論文 参考訳(メタデータ) (2020-07-19T01:35:53Z) - ResNeSt: Split-Attention Networks [86.25490825631763]
このアーキテクチャは、異なるネットワークブランチにチャンネルワイズを応用し、機能間相互作用のキャプチャと多様な表現の学習の成功を活用する。
我々のモデルはResNeStと呼ばれ、画像分類の精度と遅延トレードオフにおいてEfficientNetより優れています。
論文 参考訳(メタデータ) (2020-04-19T20:40:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。