Residual Feature-Reutilization Inception Network for Image Classification
- URL: http://arxiv.org/abs/2412.19433v1
- Date: Fri, 27 Dec 2024 03:55:25 GMT
- Title: Residual Feature-Reutilization Inception Network for Image Classification
- Authors: Yuanpeng He, Wenjie Song, Lijian Li, Tianxiang Zhan, Wenpin Jiao,
- Abstract summary: Capturing feature information effectively is of great importance in the field of computer vision.
We propose a novel CNN architecture that consists of residual feature-reutilization inceptions (ResFRI) or split-residual feature-reutilization inceptions (Split-ResFRI)
We obtain state-of-the-art results compared with other modern models under the premise that the model size is approximate and no additional data is used.
- Score: 1.7200496706831436
- License:
- Abstract: Capturing feature information effectively is of great importance in the field of computer vision. With the development of convolutional neural networks (CNNs), concepts like residual connection and multiple scales promote continual performance gains in diverse deep learning vision tasks. In this paper, we propose a novel CNN architecture that it consists of residual feature-reutilization inceptions (ResFRI) or split-residual feature-reutilization inceptions (Split-ResFRI). And it is composed of four convolutional combinations of different structures connected by specially designed information interaction passages, which are utilized to extract multi-scale feature information and effectively increase the receptive field of the model. Moreover, according to the network structure designed above, Split-ResFRI can adjust the segmentation ratio of the input information, thereby reducing the number of parameters and guaranteeing the model performance. Specifically, in experiments based on popular vision datasets, such as CIFAR10 ($97.94$\%), CIFAR100 ($85.91$\%) and Tiny Imagenet ($70.54$\%), we obtain state-of-the-art results compared with other modern models under the premise that the model size is approximate and no additional data is used.
Related papers
- Enhanced Convolutional Neural Networks for Improved Image Classification [0.40964539027092917]
CIFAR-10 is a widely used benchmark to evaluate the performance of classification models on small-scale, multi-class datasets.
We propose an enhanced CNN architecture that integrates deeper convolutional blocks, batch normalization, and dropout regularization to achieve superior performance.
arXiv Detail & Related papers (2025-02-02T04:32:25Z) - Efficient and Accurate Hyperspectral Image Demosaicing with Neural Network Architectures [3.386560551295746]
This study investigates the effectiveness of neural network architectures in hyperspectral image demosaicing.
We introduce a range of network models and modifications, and compare them with classical methods and existing reference network approaches.
Results indicate that our networks outperform or match reference models in both datasets demonstrating exceptional performance.
arXiv Detail & Related papers (2023-12-21T08:02:49Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Efficient Scopeformer: Towards Scalable and Rich Feature Extraction for
Intracranial Hemorrhage Detection [0.7734726150561088]
"Scopeformer" is a novel multi-CNN-ViT model for intracranial hemorrhage classification in computed tomography (CT) images.
We propose effective feature projection methods to reduce redundancies among CNN-generated features and to control the input size of ViTs.
Experiments with various Scopeformer models show that the model performance is proportional to the number of convolutional blocks employed in the feature extractor.
arXiv Detail & Related papers (2023-02-01T03:51:27Z) - GoogLe2Net: Going Transverse with Convolutions [0.0]
We propose a novel CNN architecture called GoogLe2Net.
It consists of residual feature-reutilization inceptions (ResFRI) or split residual feature-reutilization inceptions (Split-ResFRI)
Our GoogLe2Net is able to reutilize information captured by foregoing groups of convolutional layers and express multi-scale features at a fine-grained level.
arXiv Detail & Related papers (2023-01-01T15:16:10Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
We propose an architecture search method-Vision Transformer with Convolutions Architecture Search (VTCAS)
The high-performance backbone network searched by VTCAS introduces the desirable features of convolutional neural networks into the Transformer architecture.
It enhances the robustness of the neural network for object recognition, especially in the low illumination indoor scene.
arXiv Detail & Related papers (2022-03-20T02:59:51Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
We present a deep interleaved network (DIN) that learns how information at different states should be combined for high-quality (HQ) images reconstruction.
In this paper, we propose asymmetric co-attention (AsyCA) which is attached at each interleaved node to model the feature dependencies.
Our presented DIN can be trained end-to-end and applied to various image restoration tasks.
arXiv Detail & Related papers (2020-10-29T15:32:00Z) - Sequential Hierarchical Learning with Distribution Transformation for
Image Super-Resolution [83.70890515772456]
We build a sequential hierarchical learning super-resolution network (SHSR) for effective image SR.
We consider the inter-scale correlations of features, and devise a sequential multi-scale block (SMB) to progressively explore the hierarchical information.
Experiment results show SHSR achieves superior quantitative performance and visual quality to state-of-the-art methods.
arXiv Detail & Related papers (2020-07-19T01:35:53Z) - ResNeSt: Split-Attention Networks [86.25490825631763]
We present a modularized architecture, which applies the channel-wise attention on different network branches to leverage their success in capturing cross-feature interactions and learning diverse representations.
Our model, named ResNeSt, outperforms EfficientNet in accuracy and latency trade-off on image classification.
arXiv Detail & Related papers (2020-04-19T20:40:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.