Generative Adversarial Network on Motion-Blur Image Restoration
- URL: http://arxiv.org/abs/2412.19479v1
- Date: Fri, 27 Dec 2024 06:12:50 GMT
- Title: Generative Adversarial Network on Motion-Blur Image Restoration
- Authors: Zhengdong Li,
- Abstract summary: We will focus on leveraging Generative Adrial Networks (GANs) to effectively deblur images affected by motion blur.
A GAN-based adversarialflow model is defined, training and evaluating by GoPro dataset.
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) are the two evaluation metrics used to provide quantitative measures of image quality.
- Score: 0.0
- License:
- Abstract: In everyday life, photographs taken with a camera often suffer from motion blur due to hand vibrations or sudden movements. This phenomenon can significantly detract from the quality of the images captured, making it an interesting challenge to develop a deep learning model that utilizes the principles of adversarial networks to restore clarity to these blurred pixels. In this project, we will focus on leveraging Generative Adversarial Networks (GANs) to effectively deblur images affected by motion blur. A GAN-based Tensorflow model is defined, training and evaluating by GoPro dataset which comprises paired street view images featuring both clear and blurred versions. This adversarial training process between Discriminator and Generator helps to produce increasingly realistic images over time. Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) are the two evaluation metrics used to provide quantitative measures of image quality, allowing us to evaluate the effectiveness of the deblurring process. Mean PSNR in 29.1644 and mean SSIM in 0.7459 with average 4.6921 seconds deblurring time are achieved in this project. The blurry pixels are sharper in the output of GAN model shows a good image restoration effect in real world applications.
Related papers
- Real-World Efficient Blind Motion Deblurring via Blur Pixel Discretization [45.20189929583484]
We decompose the deblurring (regression) task into blur pixel discretization and discrete-to-continuous conversion tasks.
Specifically, we generate the discretized image residual errors by identifying the blur pixels and then transform them to a continuous form.
arXiv Detail & Related papers (2024-04-18T13:22:56Z) - Image Deblurring using GAN [0.0]
This project focuses on the application of Generative Adversarial Network (GAN) in image deblurring.
The project defines a GAN model inflow and trains it with GoPRO dataset.
The network can obtain sharper pixels in image, achieving an average of 29.3 Peak Signal-to-Noise Ratio (PSNR) and 0.72 Structural Similarity Assessment (SSIM)
arXiv Detail & Related papers (2023-12-15T02:43:30Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Recovering Continuous Scene Dynamics from A Single Blurry Image with
Events [58.7185835546638]
An Implicit Video Function (IVF) is learned to represent a single motion blurred image with concurrent events.
A dual attention transformer is proposed to efficiently leverage merits from both modalities.
The proposed network is trained only with the supervision of ground-truth images of limited referenced timestamps.
arXiv Detail & Related papers (2023-04-05T18:44:17Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution [134.9023380383406]
Single image super-resolution (SISR) methods would not perform well if the assumed degradation model deviates from those in real images.
This paper proposes to design a more complex but practical degradation model that consists of randomly shuffled blur, downsampling and noise degradations.
arXiv Detail & Related papers (2021-03-25T17:40:53Z) - Deblurring Processor for Motion-Blurred Faces Based on Generative
Adversarial Networks [0.5837881923712392]
This paper mainly focuses on the restoration of motion-blurred faces.
A deblurring method for motion-blurred facial image signals based on generative adversarial networks(GANs) is proposed.
It uses an end-to-end method to train a sharp image generator, i.e., a processor for motion-blurred facial images.
arXiv Detail & Related papers (2021-03-03T01:35:02Z) - Single Image Non-uniform Blur Kernel Estimation via Adaptive Basis
Decomposition [1.854931308524932]
We propose a general, non-parametric model for dense non-uniform motion blur estimation.
We show that our method overcomes the limitations of existing non-uniform motion blur estimation.
arXiv Detail & Related papers (2021-02-01T18:02:31Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
We present a pixel aggregation network and learn the pixel sampling and averaging strategies for image denoising.
We develop a pixel aggregation network for video denoising to sample pixels across the spatial-temporal space.
Our method is able to solve the misalignment issues caused by large motion in dynamic scenes.
arXiv Detail & Related papers (2021-01-26T13:00:46Z) - Self-Supervised Linear Motion Deblurring [112.75317069916579]
Deep convolutional neural networks are state-of-the-art for image deblurring.
We present a differentiable reblur model for self-supervised motion deblurring.
Our experiments demonstrate that self-supervised single image deblurring is really feasible.
arXiv Detail & Related papers (2020-02-10T20:15:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.