論文の概要: Exploiting Domain-Specific Parallel Data on Multilingual Language Models for Low-resource Language Translation
- arxiv url: http://arxiv.org/abs/2412.19522v1
- Date: Fri, 27 Dec 2024 08:25:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:27:03.421248
- Title: Exploiting Domain-Specific Parallel Data on Multilingual Language Models for Low-resource Language Translation
- Title(参考訳): 低リソース言語翻訳のための多言語言語モデルにおけるドメイン特化並列データの生成
- Authors: Surangika Ranathungaa, Shravan Nayak, Shih-Ting Cindy Huang, Yanke Mao, Tong Su, Yun-Hsiang Ray Chan, Songchen Yuan, Anthony Rinaldi, Annie En-Shiun Lee,
- Abstract要約: ドメイン固有NMTモデル構築における補助領域からの並列データの有効性を評価する。
NMTモデルの性能に対する領域分散の影響について検討する。
ドメイン固有NMTモデルの構築において補助並列データを利用するためのいくつかの戦略を推奨する。
- 参考スコア(独自算出の注目度): 0.6467856992131628
- License:
- Abstract: Neural Machine Translation (NMT) systems built on multilingual sequence-to-sequence Language Models (msLMs) fail to deliver expected results when the amount of parallel data for a language, as well as the language's representation in the model are limited. This restricts the capabilities of domain-specific NMT systems for low-resource languages (LRLs). As a solution, parallel data from auxiliary domains can be used either to fine-tune or to further pre-train the msLM. We present an evaluation of the effectiveness of these two techniques in the context of domain-specific LRL-NMT. We also explore the impact of domain divergence on NMT model performance. We recommend several strategies for utilizing auxiliary parallel data in building domain-specific NMT models for LRLs.
- Abstract(参考訳): マルチリンガルシーケンスからシーケンス言語モデル(msLM)上に構築されたニューラル機械翻訳(NMT)システムは、言語に対する並列データの量やモデル内の言語表現が制限された場合に、期待される結果が得られない。
これにより、低リソース言語(LRL)のドメイン固有NMTシステムの性能が制限される。
解決策として、補助ドメインからの並列データは微調整やmsLMの事前訓練に利用できる。
ドメイン固有LRL-NMTの文脈における2つの手法の有効性を評価する。
また,NMTモデルの性能に対する領域分散の影響についても検討する。
LRLのためのドメイン固有NMTモデルの構築において、補助並列データを利用するためのいくつかの戦略を推奨する。
関連論文リスト
- Large Language Model for Multi-Domain Translation: Benchmarking and Domain CoT Fine-tuning [55.107329995417786]
大規模言語モデル(LLM)は、目覚ましい一般的な理解と生成能力を示している。
我々は、25のドイツ語$Leftrightarrow$ Englishと22の中国語$Leftrightarrow$ Englishテストセットを特徴とするマルチドメイン翻訳のベンチマークを確立する。
本稿では,LLMの内在的マルチドメインインテリジェンスを活用し,翻訳性能を向上させるためのドメインチェーン・オブ・シント(CoT)ファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2024-10-03T16:15:04Z) - Quality or Quantity? On Data Scale and Diversity in Adapting Large Language Models for Low-Resource Translation [62.202893186343935]
低リソース言語に大規模言語モデルを適用するのに何が必要かについて検討する。
我々は、事前トレーニングとスーパーバイザードファインチューニング(SFT)の間に並列データが重要であることを示す。
2つの低リソース言語群にまたがる3つの LLM 実験により,本研究の一般化可能性を示す一貫した傾向が示された。
論文 参考訳(メタデータ) (2024-08-23T00:59:38Z) - Leveraging Auxiliary Domain Parallel Data in Intermediate Task
Fine-tuning for Low-resource Translation [6.583246002638354]
PMSSモデルの中間タスク微調整(ITFT)はドメイン固有のNMTにとって極めて有益である。
ドメイン分割テストを用いて、ドメイン固有の結果の変動を定量化し、ITFTがドメイン分散の影響をある程度軽減できることを示す。
論文 参考訳(メタデータ) (2023-06-02T09:05:18Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - Exploiting Multilingualism in Low-resource Neural Machine Translation
via Adversarial Learning [3.2258463207097017]
Generative Adversarial Networks (GAN) はニューラルマシン翻訳(NMT)に有望なアプローチを提供する
GANでは、バイリンガルモデルと同様に、マルチリンガルNTTはモデルトレーニング中に各文の参照翻訳を1つだけ考慮している。
本稿では,DAASI(Denoising Adversarial Auto-Encoder-based Sentence Interpolation)アプローチによる文計算を提案する。
論文 参考訳(メタデータ) (2023-03-31T12:34:14Z) - Exploiting Language Relatedness in Machine Translation Through Domain
Adaptation Techniques [3.257358540764261]
文のスケール化類似度スコアを,特に5グラムのKenLM言語モデルに基づく関連言語に適用する手法を提案する。
提案手法は, マルチドメインアプローチでは2 BLEU点, NMTでは3 BLEU点, 反復的バックトランスレーションアプローチでは2 BLEU点の増加に成功している。
論文 参考訳(メタデータ) (2023-03-03T09:07:30Z) - Branch-Train-Merge: Embarrassingly Parallel Training of Expert Language
Models [106.65127123304842]
Branch-Train-Merge (BTM) は、大規模言語モデル(LLM)の並列トレーニングのための効率的なアルゴリズムである。
BTMは独立した専門家のLM(ELM)の集合を学習し、それぞれ異なるテキストドメインに特化している。
実験により、BTMはGPTスタイルのトランスフォーマーLMと比較して、ドメイン内および外部のパープレクティビティを改善することが示された。
論文 参考訳(メタデータ) (2022-08-05T17:46:38Z) - DaLC: Domain Adaptation Learning Curve Prediction for Neural Machine
Translation [10.03007605098947]
ニューラルネットワーク翻訳(NMT)モデルのドメイン適応(DA)は、しばしば、ドメイン内の並列データのサンプルに基づいて新しいドメインに適応する訓練済みの一般NMTモデルに依存する。
本稿では,ソース言語におけるドメイン内単言語サンプルに基づいて,DAのパフォーマンスを予測可能なドメイン学習曲線予測(DaLC)モデルを提案する。
論文 参考訳(メタデータ) (2022-04-20T06:57:48Z) - Improving Target-side Lexical Transfer in Multilingual Neural Machine
Translation [104.10726545151043]
マルチリンガルデータは、LRLからターゲット言語に翻訳するNMTモデルにとって、LRLに翻訳するモデルよりも有益であることが判明した。
実験の結果,DecSDEは最大1.8BLEUの英語から4つの言語への翻訳において一貫した向上をもたらすことがわかった。
論文 参考訳(メタデータ) (2020-10-04T19:42:40Z) - A Simple Baseline to Semi-Supervised Domain Adaptation for Machine
Translation [73.3550140511458]
State-of-the-art Neural Machine Translation (NMT)システムは、データハングリーであり、教師付きデータを持たない新しいドメインではパフォーマンスが良くない。
NMTの半教師付きドメイン適応シナリオに対する単純だが効果のあるアプローチを提案する。
このアプローチは、言語モデリング、バックトランスレーション、教師付き翻訳の3つのトレーニング目標を通じて、TransformerベースのNMTモデルを反復的にトレーニングする。
論文 参考訳(メタデータ) (2020-01-22T16:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。