StyleRWKV: High-Quality and High-Efficiency Style Transfer with RWKV-like Architecture
- URL: http://arxiv.org/abs/2412.19535v1
- Date: Fri, 27 Dec 2024 09:01:15 GMT
- Title: StyleRWKV: High-Quality and High-Efficiency Style Transfer with RWKV-like Architecture
- Authors: Miaomiao Dai, Qianyu Zhou, Lizhuang Ma,
- Abstract summary: Style transfer aims to generate a new image preserving the content but with the artistic representation of the style source.
Most of the existing methods are based on Transformers or diffusion models, however, they suffer from quadratic computational complexity and high inference time.
We present a novel framework StyleRWKV, to achieve high-quality style transfer with limited memory usage and linear time complexity.
- Score: 29.178246094092202
- License:
- Abstract: Style transfer aims to generate a new image preserving the content but with the artistic representation of the style source. Most of the existing methods are based on Transformers or diffusion models, however, they suffer from quadratic computational complexity and high inference time. RWKV, as an emerging deep sequence models, has shown immense potential for long-context sequence modeling in NLP tasks. In this work, we present a novel framework StyleRWKV, to achieve high-quality style transfer with limited memory usage and linear time complexity. Specifically, we propose a Recurrent WKV (Re-WKV) attention mechanism, which incorporates bidirectional attention to establish a global receptive field. Additionally, we develop a Deformable Shifting (Deform-Shifting) layer that introduces learnable offsets to the sampling grid of the convolution kernel, allowing tokens to shift flexibly and adaptively from the region of interest, thereby enhancing the model's ability to capture local dependencies. Finally, we propose a Skip Scanning (S-Scanning) method that effectively establishes global contextual dependencies. Extensive experiments with analysis including qualitative and quantitative evaluations demonstrate that our approach outperforms state-of-the-art methods in terms of stylization quality, model complexity, and inference efficiency.
Related papers
- Visual Autoregressive Modeling for Image Super-Resolution [14.935662351654601]
We propose a novel visual autoregressive modeling for ISR framework with the form of next-scale prediction.
We collect large-scale data and design a training process to obtain robust generative priors.
arXiv Detail & Related papers (2025-01-31T09:53:47Z) - ZePo: Zero-Shot Portrait Stylization with Faster Sampling [61.14140480095604]
This paper presents an inversion-free portrait stylization framework based on diffusion models that accomplishes content and style feature fusion in merely four sampling steps.
We propose a feature merging strategy to amalgamate redundant features in Consistency Features, thereby reducing the computational load of attention control.
arXiv Detail & Related papers (2024-08-10T08:53:41Z) - Coherent and Multi-modality Image Inpainting via Latent Space Optimization [61.99406669027195]
PILOT (intextbfPainting vtextbfIa textbfLatent textbfOptextbfTimization) is an optimization approach grounded on a novel textitsemantic centralization and textitbackground preservation loss.
Our method searches latent spaces capable of generating inpainted regions that exhibit high fidelity to user-provided prompts while maintaining coherence with the background.
arXiv Detail & Related papers (2024-07-10T19:58:04Z) - FouriScale: A Frequency Perspective on Training-Free High-Resolution Image Synthesis [48.9652334528436]
We introduce an innovative, training-free approach FouriScale from the perspective of frequency domain analysis.
We replace the original convolutional layers in pre-trained diffusion models by incorporating a dilation technique along with a low-pass operation.
Our method successfully balances the structural integrity and fidelity of generated images, achieving an astonishing capacity of arbitrary-size, high-resolution, and high-quality generation.
arXiv Detail & Related papers (2024-03-19T17:59:33Z) - HiCAST: Highly Customized Arbitrary Style Transfer with Adapter Enhanced
Diffusion Models [84.12784265734238]
The goal of Arbitrary Style Transfer (AST) is injecting the artistic features of a style reference into a given image/video.
We propose HiCAST, which is capable of explicitly customizing the stylization results according to various source of semantic clues.
A novel learning objective is leveraged for video diffusion model training, which significantly improve cross-frame temporal consistency.
arXiv Detail & Related papers (2024-01-11T12:26:23Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST) is a novel style representation learning and transfer framework.
We present an adaptive contrastive learning scheme for style transfer by introducing an input-dependent temperature.
Our framework consists of three key components, i.e., a parallel contrastive learning scheme for style representation and style transfer, a domain enhancement module for effective learning of style distribution, and a generative network for style transfer.
arXiv Detail & Related papers (2023-03-09T04:35:00Z) - Style Curriculum Learning for Robust Medical Image Segmentation [62.02435329931057]
Deep segmentation models often degrade due to distribution shifts in image intensities between the training and test data sets.
We propose a novel framework to ensure robust segmentation in the presence of such distribution shifts.
arXiv Detail & Related papers (2021-08-01T08:56:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.