Single-qubit quantum gate at an arbitrary speed
- URL: http://arxiv.org/abs/2412.19561v1
- Date: Fri, 27 Dec 2024 10:05:27 GMT
- Title: Single-qubit quantum gate at an arbitrary speed
- Authors: Seongjin Ahn, Kichan Park, Daehee Cho, Mikyoung Lim, Taeyoung Choi, Andrey S. Moskalenko,
- Abstract summary: We show that it is possible to construct a universal set of single-qubit gates at a strong-coupling and ultrafast regime.
We observe a transition in the scaling behavior of the central frequency from the long-gate time regime to the short-gate time regime.
- Score: 0.7256915467062314
- License:
- Abstract: Quantum information processing comprises physical processes, which obey the quantum speed limit (QSL): high speed requires strong driving. Single-qubit gates using Rabi oscillation, which is based on the rotating wave approximation (RWA), satisfy this bound in the form that the gate time $T$ is inversely proportional to the Rabi frequency $\Omega$, characterizing the driving strength. However, if the gate time is comparable or shorter than the qubit period $T_{0} \equiv 2\pi / \omega_{0}$, the RWA actually breaks down since the Rabi frequency has to be large compared to the qubit frequency $\omega_{0}$ due to the QSL, which is given as $T \gtrsim \pi/\Omega$. We show that it is possible to construct a universal set of single-qubit gates at this strong-coupling and ultrafast regime, by adjusting the central frequency $\omega$ and the Rabi frequency $\Omega$ of the driving pulse. We observe a transition in the scaling behavior of the central frequency from the long-gate time regime ($T \gg T_{0}$) to the short-gate time ($T \ll T_{0}$) regime. In the former, the central frequency is nearly resonant to the qubit, i.e., $\omega \simeq \omega_{0}$, whereas in the latter, the central frequency is inversely proportional to the gate time, i.e., $\omega \sim \pi/T$. We identify the transition gate time at which the scaling exponent $n$ of the optimal central frequency $\omega \sim T^{n}$ changes from $n=0$ to $n=-1$.
Related papers
- A dressed singlet-triplet qubit in germanium [0.0]
In semiconductor hole spin qubits, low magnetic field operation extends the coherence time but proportionally reduces the gate speed.
In contrast, singlet-triplet (ST) qubits are primarily controlled by the exchange interaction.
By modulating germanJ$, we achieve resonant driving of the ST qubit.
arXiv Detail & Related papers (2025-01-24T16:44:58Z) - Fast, robust and laser-free universal entangling gates for trapped-ion quantum computing [4.063218695552192]
The speed of this gate is an order of magnitude higher than that of previously demonstrated radio frequency controlled two-qubit entangling gates.
The gate requires only a single continuous RF field per qubit, making it well suited for scaling a quantum processor to large numbers of qubits.
arXiv Detail & Related papers (2024-03-07T18:33:50Z) - Tunable inductive coupler for high fidelity gates between fluxonium
qubits [0.27638147714466216]
We present a tunable coupler that realizes strong inductive coupling between two heavy-fluxonium qubits.
These qualities lead to fast, high-fidelity single- and two-qubit gates.
arXiv Detail & Related papers (2023-09-11T18:00:18Z) - Cat-qubit-inspired gate on cos($2\theta$) qubits [77.34726150561087]
We introduce a single-qubit $Z$ gate inspired by the noise-bias preserving gate of the Kerr-cat qubit.
This scheme relies on a $pi$ rotation in phase space via a beamsplitter-like transformation between a qubit and ancilla qubit.
arXiv Detail & Related papers (2023-04-04T23:06:22Z) - Sharper Convergence Guarantees for Asynchronous SGD for Distributed and
Federated Learning [77.22019100456595]
We show a training algorithm for distributed computation workers with varying communication frequency.
In this work, we obtain a tighter convergence rate of $mathcalO!!!(sigma2-2_avg!! .
We also show that the heterogeneity term in rate is affected by the average delay within each worker.
arXiv Detail & Related papers (2022-06-16T17:10:57Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Accelerated Gradient Tracking over Time-varying Graphs for Decentralized Optimization [59.65871549878937]
We prove that the practical single loop accelerated gradient tracking needs $O(fracgamma1-sigma_gamma)2sqrtfracLepsilon)$.
Our convergence rates improve significantly over the ones of $O(frac1epsilon5/7)$ and $O(fracLmu)5/7frac1 (1-sigma)1.5logfrac1epsilon)$.
arXiv Detail & Related papers (2021-04-06T15:34:14Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z) - Fast logic with slow qubits: microwave-activated controlled-Z gate on
low-frequency fluxoniums [0.0]
Gate is activated by a $61.6textrmns$ long pulse at the frequency between non-computational transitions.
The measured gate error of $(8pm1)times 10-3$ is limited by decoherence in the non-computational subspace.
arXiv Detail & Related papers (2020-11-05T03:25:08Z) - Universal fast flux control of a coherent, low-frequency qubit [2.5608309213668585]
New protocols for reset, fast coherent control, and readout are presented.
We realize single-qubit gates in $20-60$ns with an average gate fidelity of $99.8%$ as characterized by randomized benchmarking.
arXiv Detail & Related papers (2020-02-25T03:42:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.