Universal fast flux control of a coherent, low-frequency qubit
- URL: http://arxiv.org/abs/2002.10653v1
- Date: Tue, 25 Feb 2020 03:42:09 GMT
- Title: Universal fast flux control of a coherent, low-frequency qubit
- Authors: Helin Zhang, Srivatsan Chakram, Tanay Roy, Nathan Earnest, Yao Lu,
Ziwen Huang, Daniel Weiss, Jens Koch, David I. Schuster
- Abstract summary: New protocols for reset, fast coherent control, and readout are presented.
We realize single-qubit gates in $20-60$ns with an average gate fidelity of $99.8%$ as characterized by randomized benchmarking.
- Score: 2.5608309213668585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The \textit{heavy-fluxonium} circuit is a promising building block for
superconducting quantum processors due to its long relaxation and dephasing
time at the half-flux frustration point. However, the suppressed charge matrix
elements and low transition frequency have made it challenging to perform fast
single-qubit gates using standard protocols. We report on new protocols for
reset, fast coherent control, and readout, that allow high-quality operation of
the qubit with a 14 MHz transition frequency, an order of magnitude lower in
energy than the ambient thermal energy scale. We utilize higher levels of the
fluxonium to initialize the qubit with $97$\% fidelity, corresponding to
cooling it to $190~\mathrm{\mu K}$. We realize high-fidelity control using a
universal set of single-cycle flux gates, which are comprised of directly
synthesizable fast pulses, while plasmon-assisted readout is used for
measurements. On a qubit with $T_1, T_{2e}\sim$~300~$\mathrm{\mu s}$, we
realize single-qubit gates in $20-60$~ns with an average gate fidelity of
$99.8\%$ as characterized by randomized benchmarking.
Related papers
- High-fidelity gates in a transmon using bath engineering for passive leakage reset [65.46249968484794]
Leakage, the occupation of any state not used in the computation, is one of the most devastating errors in quantum error correction.
We demonstrate a device which reduces the lifetimes of the leakage states in the transmon by three orders of magnitude.
arXiv Detail & Related papers (2024-11-06T18:28:49Z) - Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
We demonstrate low-latency feedback with a scalable FPGA decoder integrated into a superconducting quantum processor.
We observe logical error suppression as the number of decoding rounds is increased.
The decoder throughput and latency developed in this work, combined with continued device improvements, unlock the next generation of experiments.
arXiv Detail & Related papers (2024-10-07T17:07:18Z) - High-sensitivity AC-charge detection with a MHz-frequency fluxonium
qubit [0.0]
We operate a heavy fluxonium with an unprecedentedly low transition frequency of $1.8mathrm$$.
By directly addressing the qubit transition with a capacitively coupled waveguide, we showcase its high sensitivity to a radio-frequency field.
This method results in a charge sensitivity of $33mumathrme/sqrtmathrmHz$, or an energy sensitivity (in joules per hertz) of $2.8hbar.
arXiv Detail & Related papers (2023-07-26T17:48:09Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Fast, high-fidelity addressed single-qubit gates using efficient
composite pulse sequences [0.0]
We use electronic microwave control methods to implement addressed single-qubit gates with high speed and fidelity.
For a single qubit, we benchmark an error of $1.5$ $times$ $10-6$ per Clifford gate.
For two qubits in the same trap zone, we use a spatial microwave field gradient, combined with an efficient 4-pulse scheme.
arXiv Detail & Related papers (2023-05-11T11:01:45Z) - Cat-qubit-inspired gate on cos($2\theta$) qubits [77.34726150561087]
We introduce a single-qubit $Z$ gate inspired by the noise-bias preserving gate of the Kerr-cat qubit.
This scheme relies on a $pi$ rotation in phase space via a beamsplitter-like transformation between a qubit and ancilla qubit.
arXiv Detail & Related papers (2023-04-04T23:06:22Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Fast high-fidelity gates for galvanically-coupled fluxonium qubits using
strong flux modulation [0.08388591755871733]
Long coherence times, large anharmonicity and robust charge-noise insensitivity render fluxonium qubits an interesting alternative to transmons.
Recent experiments have demonstrated record coherence times for low-frequency fluxonia.
We propose a galvanic-coupling scheme with flux-tunable $textitXX$ coupling.
arXiv Detail & Related papers (2022-07-08T15:45:10Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Fast logic with slow qubits: microwave-activated controlled-Z gate on
low-frequency fluxoniums [0.0]
Gate is activated by a $61.6textrmns$ long pulse at the frequency between non-computational transitions.
The measured gate error of $(8pm1)times 10-3$ is limited by decoherence in the non-computational subspace.
arXiv Detail & Related papers (2020-11-05T03:25:08Z) - Demonstration of an All-Microwave Controlled-Phase Gate between Far
Detuned Qubits [0.0]
We present an all-microwave controlled-phase gate between two transversely coupled transmon qubits.
Our gate constitutes a promising alternative to present two-qubit gates and could have hardware scaling advantages in large-scale quantum processors.
arXiv Detail & Related papers (2020-06-18T16:08:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.