論文の概要: Enhancing Fine-grained Image Classification through Attentive Batch Training
- arxiv url: http://arxiv.org/abs/2412.19606v1
- Date: Fri, 27 Dec 2024 12:07:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:26:06.163659
- Title: Enhancing Fine-grained Image Classification through Attentive Batch Training
- Title(参考訳): 注意的バッチトレーニングによるきめ細かい画像分類の強化
- Authors: Duy M. Le, Bao Q. Bui, Anh Tran, Cong Tran, Cuong Pham,
- Abstract要約: バッチ画像の視覚的特徴ベクトルを統合するために,Residual Relationship Attention (RRA) と呼ばれる新しいモジュールを提案する。
また、バッチ内の原画像間の関係の位置を符号化する関係位置という新しいフレームワークを設計する。
提案手法は, CUB200-2011およびStanford Dogデータセット上での, $(+2.78%)$および$(+3.83%)$の平均値の増加により, 異なる粒度分類器の精度が大幅に向上したことを示す。
- 参考スコア(独自算出の注目度): 3.9677818965537983
- License:
- Abstract: Fine-grained image classification, which is a challenging task in computer vision, requires precise differentiation among visually similar object categories. In this paper, we propose 1) a novel module called Residual Relationship Attention (RRA) that leverages the relationships between images within each training batch to effectively integrate visual feature vectors of batch images and 2) a novel technique called Relationship Position Encoding (RPE), which encodes the positions of relationships between original images in a batch and effectively preserves the relationship information between images within the batch. Additionally, we design a novel framework, namely Relationship Batch Integration (RBI), which utilizes RRA in conjunction with RPE, allowing the discernment of vital visual features that may remain elusive when examining a singular image representative of a particular class. Through extensive experiments, our proposed method demonstrates significant improvements in the accuracy of different fine-grained classifiers, with an average increase of $(+2.78\%)$ and $(+3.83\%)$ on the CUB200-2011 and Stanford Dog datasets, respectively, while achieving a state-of-the-art results $(95.79\%)$ on the Stanford Dog dataset. Despite not achieving the same level of improvement as in fine-grained image classification, our method still demonstrates its prowess in leveraging general image classification by attaining a state-of-the-art result of $(93.71\%)$ on the Tiny-Imagenet dataset. Furthermore, our method serves as a plug-in refinement module and can be easily integrated into different networks.
- Abstract(参考訳): コンピュータビジョンにおいて難しい課題であるきめ細かい画像分類は、視覚的に類似した対象カテゴリ間で正確に区別する必要がある。
本稿では,本稿で提案する。
1)Residual Relationship Attention(RRA)と呼ばれる新しいモジュールは,各トレーニングバッチ内の画像間の関係を利用して,バッチイメージの視覚的特徴ベクトルを効果的に統合する。
2) バッチ内の原画像間の関係の位置を符号化し, バッチ内の画像間の関係情報を効果的に保存するRPE (Relation Position Encoding) と呼ばれる新しい手法を提案する。
さらに,RRAとRPEを併用したリレーション・バッチ・インテグレーション(RBI)という新たなフレームワークを設計し,特定のクラスを対象とする画像の特異性を調べる際に,視覚的特徴の認識を可能にする。
CUB200-2011およびStanford Dogデータセットでは,それぞれ$(+2.78\%)と$(+3.83\%)が,スタンフォードドッグデータセットでは$(95.79\%)が得られた。
細粒度画像分類と同等のレベルの改善が得られていないにもかかわらず、Tiny-Imagenetデータセットの最先端結果(93.71\%)を達成して、一般的な画像分類を活用できることをまだ証明している。
さらに,本手法はプラグインリファインメントモジュールとして機能し,異なるネットワークに容易に統合できる。
関連論文リスト
- Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
画像分類性能を高めるための一般的な戦略は、T2Iモデルによって生成された合成画像でトレーニングセットを増強することである。
本研究では,既存のデータ拡張技術の欠点について検討する。
Diff-Mixと呼ばれる革新的なクラス間データ拡張手法を導入する。
論文 参考訳(メタデータ) (2024-03-28T17:23:45Z) - Advancing Image Retrieval with Few-Shot Learning and Relevance Feedback [5.770351255180495]
Image Retrieval with Relevance Feedback (IRRF) は、検索プロセス中に反復的なヒューマンインタラクションを伴う。
本稿では,タスクに適したハイパーネットワークに基づく新しいスキームを提案し,ユーザフィードバックの迅速な調整を容易にする。
提案手法は,数発の1クラス分類でSoTAを達成でき,数発のオープンセット認識のバイナリ分類タスクで同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2023-12-18T10:20:28Z) - Symmetrical Bidirectional Knowledge Alignment for Zero-Shot Sketch-Based
Image Retrieval [69.46139774646308]
本稿ではゼロショットスケッチベース画像検索(ZS-SBIR)の問題点について検討する。
目に見えないカテゴリのスケッチをクエリとして使用して、同じカテゴリのイメージにマッチさせることが目的だ。
ゼロショットスケッチに基づく画像検索(SBKA)のための新しい対称双方向知識アライメントを提案する。
論文 参考訳(メタデータ) (2023-12-16T04:50:34Z) - Training-free Zero-shot Composed Image Retrieval with Local Concept Reranking [34.31345844296072]
合成画像検索は、参照画像と対応する修正テキストの合成クエリを通して、ギャラリー画像から興味のある画像を検索しようとする。
現在の構成画像検索手法の多くは、参照画像、修正テキスト、対応するターゲット画像からなるコストのかかる3重化データセットのトレーニングに対する教師付き学習アプローチに従っている。
そこで本研究では,学習不要なゼロショット合成画像検索手法を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:31:01Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
人間-物体相互作用(Human-Object Interaction、HOI)は、人間と物体の相互作用を理解することを目的としている。
本稿では,仮想画像学習(Virtual Image Leaning, VIL)による不均衡分布の影響を軽減することを提案する。
ラベルからイメージへの新たなアプローチであるMultiple Steps Image Creation (MUSIC)が提案され、実際の画像と一貫した分布を持つ高品質なデータセットを作成する。
論文 参考訳(メタデータ) (2023-08-04T10:28:48Z) - Task-Oriented Multi-Modal Mutual Leaning for Vision-Language Models [52.3032592038514]
ラベル関連画像情報で生成したプロンプトを豊かにするためのクラス対応テキストプロンプトを提案する。
我々は、新しいクラスで4.03%、調和平均で3.19%の改善を11の分類ベンチマークで達成した。
論文 参考訳(メタデータ) (2023-03-30T06:02:40Z) - Neural Congealing: Aligning Images to a Joint Semantic Atlas [14.348512536556413]
画像の集合を横断的に意味的に共通するコンテンツを調整するための,ゼロショットの自己教師型フレームワークを提案する。
提案手法は,DINO-ViTの事前学習能力を利用して学習する。
提案手法は,大規模データセットに対する広範囲なトレーニングを必要とする最先端の手法と比較して,好適に動作することを示す。
論文 参考訳(メタデータ) (2023-02-08T09:26:22Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
セマンティックマッチングのためのマルチレベルコントラスト学習手法を提案する。
画像レベルのコントラスト学習は、畳み込み特徴が類似したオブジェクト間の対応を見出すための鍵となる要素であることを示す。
論文 参考訳(メタデータ) (2021-09-22T18:34:14Z) - RTIC: Residual Learning for Text and Image Composition using Graph
Convolutional Network [19.017377597937617]
画像検索のための画像とテキストの構成学習について検討する。
本稿では,グラフ畳み込みネットワーク(gcn)と既存の合成手法を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2021-04-07T09:41:52Z) - DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning [122.51237307910878]
我々は,画像領域間の最適なマッチングの新しい視点から,少数ショット画像分類法を開発した。
我々は、高密度画像表現間の構造距離を計算するために、Earth Mover's Distance (EMD) を用いている。
定式化において重要な要素の重みを生成するために,我々は相互参照機構を設計する。
論文 参考訳(メタデータ) (2020-03-15T08:13:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。