Toward Adaptive Reasoning in Large Language Models with Thought Rollback
- URL: http://arxiv.org/abs/2412.19707v1
- Date: Fri, 27 Dec 2024 16:02:34 GMT
- Title: Toward Adaptive Reasoning in Large Language Models with Thought Rollback
- Authors: Sijia Chen, Baochun Li,
- Abstract summary: This paper proposes a new reasoning framework, called Thought Rollback (TR)
TR allows large language models (LLMs) to adaptively build thought structure while maintaining effective reasoning toward problem-solving under hallucinations''
- Score: 33.714789952452094
- License:
- Abstract: Large language models (LLMs) have been routinely used to solve various tasks using step-by-step reasoning. However, the structure of intermediate reasoning steps, or thoughts, is rigid and unidirectional, such as chains, trees, or acyclic-directed graphs. Consequently, the resulting inflexible and forward-only reasoning may not address challenging tasks and fail when the LLM frequently gives false responses, i.e., ``hallucinations''. This paper proposes a new reasoning framework, called Thought Rollback (TR), allowing LLMs to adaptively build thought structure while maintaining effective reasoning toward problem-solving under ``hallucinations''. The core mechanism of TR is rolling back thoughts, which allows LLMs to perform error analysis on thoughts, and thus roll back to any previously mistaken thought for revision. Subsequently, by including such trial-and-error in the prompt to guide the LLM, each rollback leads to one more reliable reasoning path. Therefore, starting with a simple prompt without human annotations, LLM with TR adaptively and gradually explores thoughts for a correct solution. Comprehensive experiments on mathematical problems and multi-task reasoning demonstrate the state-of-the-art performance of TR in terms of problem-solving rate and interaction cost. For instance, the solving rate of GPT-4 with TR outperforms the current best by $9\%$ on the MATH dataset.
Related papers
- SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs [48.28847964704554]
Chain-of-Thought (CoT) reasoning enables Large Language Models (LLMs) to solve complex reasoning tasks.
We propose a novel approach for continuous-space reasoning that does not require modifying the underlying LLM.
arXiv Detail & Related papers (2025-02-17T18:52:29Z) - Unveiling the Magic of Code Reasoning through Hypothesis Decomposition and Amendment [54.62926010621013]
We introduce a novel task, code reasoning, to provide a new perspective for the reasoning abilities of large language models.
We summarize three meta-benchmarks based on established forms of logical reasoning, and instantiate these into eight specific benchmark tasks.
We present a new pathway exploration pipeline inspired by human intricate problem-solving methods.
arXiv Detail & Related papers (2025-02-17T10:39:58Z) - Investigating the Shortcomings of LLMs in Step-by-Step Legal Reasoning [34.427730009102966]
We develop an automated evaluation framework to identify reasoning errors and evaluate the performance of LLMs.
Our work will also serve as an evaluation framework that can be used in detailed error analysis of reasoning chains for logic-intensive complex tasks.
arXiv Detail & Related papers (2025-02-08T19:49:32Z) - Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying [0.3659498819753633]
State-of-the-art Large Language models (LLMs) continue to struggle when performing logical and mathematical reasoning.
This paper makes use of the notion of critical questions from the literature on argumentation theory, focusing in particular on Toulmin's model of argumentation.
We show that employing these critical questions can improve the reasoning capabilities of LLMs.
arXiv Detail & Related papers (2024-12-19T18:51:30Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - Large Language Models as an Indirect Reasoner: Contrapositive and Contradiction for Automated Reasoning [74.90592233107712]
We propose a Direct-Indirect Reasoning (DIR) method, which considers Direct Reasoning (DR) and Indirect Reasoning (IR) as multiple parallel reasoning paths that are merged to derive the final answer.
Our DIR method is simple yet effective and can be straightforwardly integrated with existing variants of CoT methods.
arXiv Detail & Related papers (2024-02-06T03:41:12Z) - Fill in the Blank: Exploring and Enhancing LLM Capabilities for Backward Reasoning in Math Word Problems [17.80128896525717]
backward reasoning is relatively unexplored.
backward reasoning can be seen as the ''inverse'' of forward reasoning.
We propose variations of three different forward reasoning strategies to improve performance.
arXiv Detail & Related papers (2023-10-03T12:03:06Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
We propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution.
Our framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation.
arXiv Detail & Related papers (2023-05-30T15:25:45Z) - RCOT: Detecting and Rectifying Factual Inconsistency in Reasoning by
Reversing Chain-of-Thought [56.558892336235914]
Reversing Chain-of-Thought (RCoT) is a novel method to improve large language models' reasoning abilities.
RCoT automatically detects and rectifys factual inconsistency in generated solutions.
We show that manually written fine-grained feedback can dramatically improve LLMs' reasoning abilities.
arXiv Detail & Related papers (2023-05-19T08:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.