ProKAN: Progressive Stacking of Kolmogorov-Arnold Networks for Efficient Liver Segmentation
- URL: http://arxiv.org/abs/2412.19713v1
- Date: Fri, 27 Dec 2024 16:14:06 GMT
- Title: ProKAN: Progressive Stacking of Kolmogorov-Arnold Networks for Efficient Liver Segmentation
- Authors: Bhavesh Gyanchandani, Aditya Oza, Abhinav Roy,
- Abstract summary: proKAN is a progressive stacking methodology for Kolmogorov-Arnold Networks (KANs) designed to address these challenges.
proKAN dynamically adjusts its complexity by progressively adding KAN blocks during training, based on overfitting behavior.
Our proposed architecture achieves state-of-the-art performance in liver segmentation tasks, outperforming standard Multi-Layer Perceptrons (MLPs) and fixed KAN architectures.
- Score: 0.0
- License:
- Abstract: The growing need for accurate and efficient 3D identification of tumors, particularly in liver segmentation, has spurred considerable research into deep learning models. While many existing architectures offer strong performance, they often face challenges such as overfitting and excessive computational costs. An adjustable and flexible architecture that strikes a balance between time efficiency and model complexity remains an unmet requirement. In this paper, we introduce proKAN, a progressive stacking methodology for Kolmogorov-Arnold Networks (KANs) designed to address these challenges. Unlike traditional architectures, proKAN dynamically adjusts its complexity by progressively adding KAN blocks during training, based on overfitting behavior. This approach allows the network to stop growing when overfitting is detected, preventing unnecessary computational overhead while maintaining high accuracy. Additionally, proKAN utilizes KAN's learnable activation functions modeled through B-splines, which provide enhanced flexibility in learning complex relationships in 3D medical data. Our proposed architecture achieves state-of-the-art performance in liver segmentation tasks, outperforming standard Multi-Layer Perceptrons (MLPs) and fixed KAN architectures. The dynamic nature of proKAN ensures efficient training times and high accuracy without the risk of overfitting. Furthermore, proKAN provides better interpretability by allowing insight into the decision-making process through its learnable coefficients. The experimental results demonstrate a significant improvement in accuracy, Dice score, and time efficiency, making proKAN a compelling solution for 3D medical image segmentation tasks.
Related papers
- Exploring Kolmogorov-Arnold Networks for Interpretable Time Series Classification [0.17999333451993949]
Kolmogorov-Arnold Networks (KANs) have been proposed as a more interpretable alternative to state-of-the-art models.
In this paper, we aim to conduct a comprehensive and robust exploration of the KAN architecture for time series classification.
Our results show that (1) Efficient KAN outperforms in performance and computational efficiency, showcasing its suitability for tasks classification tasks.
arXiv Detail & Related papers (2024-11-22T13:01:36Z) - How Feature Learning Can Improve Neural Scaling Laws [86.9540615081759]
We develop a solvable model of neural scaling laws beyond the kernel limit.
We show how performance scales with model size, training time, and the total amount of available data.
arXiv Detail & Related papers (2024-09-26T14:05:32Z) - MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation [6.673169053236727]
We propose MambaClinix, a novel U-shaped architecture for medical image segmentation.
MambaClinix integrates a hierarchical gated convolutional network with Mamba in an adaptive stage-wise framework.
Our results show that MambaClinix achieves high segmentation accuracy while maintaining low model complexity.
arXiv Detail & Related papers (2024-09-19T07:51:14Z) - Faster Diffusion Action Segmentation [9.868244939496678]
Temporal Action Classification (TAS) is an essential task in video analysis, aiming to segment and classify continuous frames into distinct action segments.
Recent advances in diffusion models have demonstrated substantial success in TAS tasks due to their stable training process and high-quality generation capabilities.
We propose EffiDiffAct, an efficient and high-performance TAS algorithm.
arXiv Detail & Related papers (2024-08-04T13:23:18Z) - Parameter-Efficient Fine-Tuning for Continual Learning: A Neural Tangent Kernel Perspective [125.00228936051657]
We introduce NTK-CL, a novel framework that eliminates task-specific parameter storage while adaptively generating task-relevant features.
By fine-tuning optimizable parameters with appropriate regularization, NTK-CL achieves state-of-the-art performance on established PEFT-CL benchmarks.
arXiv Detail & Related papers (2024-07-24T09:30:04Z) - LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
Recent deep neural networks (DNNs) have made impressive progress in performance by introducing learned data priors.
We propose a novel method of Learning Resampling (termed LeRF) which takes advantage of both the structural priors learned by DNNs and the locally continuous assumption.
LeRF assigns spatially varying resampling functions to input image pixels and learns to predict the shapes of these resampling functions with a neural network.
arXiv Detail & Related papers (2024-07-13T16:09:45Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D Medical Image Segmentation [34.865695471451886]
We propose a 3D medical image segmentation model, named Efficient to Efficient Network (E2ENet)
It incorporates two parametrically and computationally efficient designs.
It consistently achieves a superior trade-off between accuracy and efficiency across various resource constraints.
arXiv Detail & Related papers (2023-12-07T22:13:37Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Stronger, Faster and More Explainable: A Graph Convolutional Baseline
for Skeleton-based Action Recognition [22.90127409366107]
We propose an efficient but strong baseline based on Graph Convolutional Network (GCN)
Inspired by the success of the ResNet architecture in Convolutional Neural Network (CNN), a ResGCN module is introduced in GCN.
A PartAtt block is proposed to discover the most essential body parts over a whole action sequence.
arXiv Detail & Related papers (2020-10-20T02:56:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.