Scientific Machine Learning with Kolmogorov-Arnold Networks
- URL: http://arxiv.org/abs/2507.22959v1
- Date: Wed, 30 Jul 2025 01:26:44 GMT
- Title: Scientific Machine Learning with Kolmogorov-Arnold Networks
- Authors: Salah A. Faroughi, Farinaz Mostajeran, Amin Hamed Mashhadzadeh, Shirko Faroughi,
- Abstract summary: The field of scientific machine learning is increasingly adopting Kolmogorov-Arnold Networks (KANs) for data encoding.<n>This review categorizes recent progress in KAN-based models across three distinct perspectives: (i) data-driven learning, (ii) physics-informed modeling, and (iii) deep operator learning.<n>We highlight consistent improvements in accuracy, convergence, and spectral representation, clarifying KANs' advantages in capturing complex dynamics while learning more effectively.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of scientific machine learning, which originally utilized multilayer perceptrons (MLPs), is increasingly adopting Kolmogorov-Arnold Networks (KANs) for data encoding. This shift is driven by the limitations of MLPs, including poor interpretability, fixed activation functions, and difficulty capturing localized or high-frequency features. KANs address these issues with enhanced interpretability and flexibility, enabling more efficient modeling of complex nonlinear interactions and effectively overcoming the constraints associated with conventional MLP architectures. This review categorizes recent progress in KAN-based models across three distinct perspectives: (i) data-driven learning, (ii) physics-informed modeling, and (iii) deep operator learning. Each perspective is examined through the lens of architectural design, training strategies, application efficacy, and comparative evaluation against MLP-based counterparts. By benchmarking KANs against MLPs, we highlight consistent improvements in accuracy, convergence, and spectral representation, clarifying KANs' advantages in capturing complex dynamics while learning more effectively. Finally, this review identifies critical challenges and open research questions in KAN development, particularly regarding computational efficiency, theoretical guarantees, hyperparameter tuning, and algorithm complexity. We also outline future research directions aimed at improving the robustness, scalability, and physical consistency of KAN-based frameworks.
Related papers
- Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - Dynamic Programming Techniques for Enhancing Cognitive Representation in Knowledge Tracing [125.75923987618977]
We propose the Cognitive Representation Dynamic Programming based Knowledge Tracing (CRDP-KT) model.<n>It is a dynamic programming algorithm to optimize cognitive representations based on the difficulty of the questions and the performance intervals between them.<n>It provides more accurate and systematic input features for subsequent model training, thereby minimizing distortion in the simulation of cognitive states.
arXiv Detail & Related papers (2025-06-03T14:44:48Z) - Enhancing Federated Learning with Kolmogorov-Arnold Networks: A Comparative Study Across Diverse Aggregation Strategies [0.24578723416255752]
Kolmogorov-Arnold Networks (KAN) have shown promising capabilities in modeling complex nonlinear relationships.<n>KANs consistently outperform Multilayer Perceptrons in terms of accuracy, stability, and convergence efficiency.
arXiv Detail & Related papers (2025-05-12T14:56:27Z) - Large Language Models Post-training: Surveying Techniques from Alignment to Reasoning [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.<n>These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.<n>This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures ethical coherence and alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Integration and Adaptation, which
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - ProKAN: Progressive Stacking of Kolmogorov-Arnold Networks for Efficient Liver Segmentation [0.0]
proKAN is a progressive stacking methodology for Kolmogorov-Arnold Networks (KANs) designed to address these challenges.<n> proKAN dynamically adjusts its complexity by progressively adding KAN blocks during training, based on overfitting behavior.<n>Our proposed architecture achieves state-of-the-art performance in liver segmentation tasks, outperforming standard Multi-Layer Perceptrons (MLPs) and fixed KAN architectures.
arXiv Detail & Related papers (2024-12-27T16:14:06Z) - KKANs: Kurkova-Kolmogorov-Arnold Networks and Their Learning Dynamics [1.8434042562191815]
Kurkova-Kolmogorov-Arnold Network (KKAN) is a new two-block architecture that combines robust multi-layer perceptron (MLP) based inner functions with flexible linear combinations of basis functions as outer functions.<n> benchmark results show that KKANs outperform original Kolmogorov-Arnold Networks (KANs) in function approximation and operator learning tasks.
arXiv Detail & Related papers (2024-12-21T19:01:38Z) - Exploring Kolmogorov-Arnold Networks for Interpretable Time Series Classification [0.17999333451993949]
Kolmogorov-Arnold Networks (KANs) have been proposed as a more interpretable alternative to state-of-the-art models.<n>In this paper, we aim to conduct a comprehensive and robust exploration of the KAN architecture for time series classification.<n>Our results show that (1) Efficient KAN outperforms in performance and computational efficiency, showcasing its suitability for tasks classification tasks.
arXiv Detail & Related papers (2024-11-22T13:01:36Z) - A preliminary study on continual learning in computer vision using Kolmogorov-Arnold Networks [43.70716358136333]
Kolmogorov- Networks (KAN) are based on a fundamentally different mathematical framework.
KANs address several major issues insio, such as forgetting in continual learning scenarios.
We extend the investigation by evaluating the performance of KANs in continual learning tasks within computer vision.
arXiv Detail & Related papers (2024-09-20T14:49:21Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.