Tensor Network Estimation of Distribution Algorithms
- URL: http://arxiv.org/abs/2412.19780v1
- Date: Fri, 27 Dec 2024 18:22:47 GMT
- Title: Tensor Network Estimation of Distribution Algorithms
- Authors: John Gardiner, Javier Lopez-Piqueres,
- Abstract summary: Methods integrating tensor networks into evolutionary optimization algorithms have appeared in the recent literature.
We find that optimization performance of these methods is not related to the power of the generative model in a straightforward way.
In light of this we find that adding an explicit mutation operator to the output of the generative model often improves optimization performance.
- Score: 0.0
- License:
- Abstract: Tensor networks are a tool first employed in the context of many-body quantum physics that now have a wide range of uses across the computational sciences, from numerical methods to machine learning. Methods integrating tensor networks into evolutionary optimization algorithms have appeared in the recent literature. In essence, these methods can be understood as replacing the traditional crossover operation of a genetic algorithm with a tensor network-based generative model. We investigate these methods from the point of view that they are Estimation of Distribution Algorithms (EDAs). We find that optimization performance of these methods is not related to the power of the generative model in a straightforward way. Generative models that are better (in the sense that they better model the distribution from which their training data is drawn) do not necessarily result in better performance of the optimization algorithm they form a part of. This raises the question of how best to incorporate powerful generative models into optimization routines. In light of this we find that adding an explicit mutation operator to the output of the generative model often improves optimization performance.
Related papers
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
generative diffusion models (GDMs) have emerged as a promising new approach to network optimization.
In this study, we first explore the intrinsic characteristics of generative models.
We provide a concise theoretical and intuitive demonstration of the advantages of generative models over discriminative network optimization.
arXiv Detail & Related papers (2024-11-01T09:05:47Z) - Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
We show that vanilla and constrained BO algorithms are inefficient when optimising invariant objectives.
We derive a bound on the maximum information gain of these invariant kernels.
We use our method to design a current drive system for a nuclear fusion reactor, finding a high-performance solution.
arXiv Detail & Related papers (2024-10-22T12:51:46Z) - Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
Black-box optimization problems are common in many real-world applications.
These problems require optimization through input-output interactions without access to internal workings.
Two widely used gradient-free optimization techniques are employed to address such challenges.
This paper aims to elucidate the similarities and differences in the utilization of model uncertainty between these two methods.
arXiv Detail & Related papers (2024-03-21T13:59:19Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
We argue that zero-shot structured pruning of pretrained models allows them to increase compute efficiency with minimal reduction in performance.
Our results show that pruning convolutional filters of pretrained models can lead to more than 20% performance improvement in low computational regimes.
arXiv Detail & Related papers (2023-04-25T21:49:09Z) - Non-Convex Optimization with Spectral Radius Regularization [17.629499015699704]
We develop a regularization method which finds flat minima during the training of deep neural networks and other machine learning models.
These minima generalize better than sharp minima, allowing models to better generalize to real word test data.
arXiv Detail & Related papers (2021-02-22T17:39:05Z) - Evolutionary Variational Optimization of Generative Models [0.0]
We combine two popular optimization approaches to derive learning algorithms for generative models: variational optimization and evolutionary algorithms.
We show that evolutionary algorithms can effectively and efficiently optimize the variational bound.
In the category of "zero-shot" learning, we observed the evolutionary variational algorithm to significantly improve the state-of-the-art in many benchmark settings.
arXiv Detail & Related papers (2020-12-22T19:06:33Z) - Optimizing the Parameters of A Physical Exercise Dose-Response Model: An
Algorithmic Comparison [1.0152838128195467]
The purpose of this research was to compare the robustness and performance of a local and global optimization algorithm when given the task of fitting the parameters of a common non-linear dose-response model utilized in the field of exercise physiology.
The results of our comparison over 1000 experimental runs demonstrate the superior performance of the evolutionary computation based algorithm to consistently achieve a stronger model fit and holdout performance in comparison to the local search algorithm.
arXiv Detail & Related papers (2020-12-16T22:06:35Z) - Hyperspectral Unmixing Network Inspired by Unfolding an Optimization
Problem [2.4016406737205753]
The hyperspectral image (HSI) unmixing task is essentially an inverse problem, which is commonly solved by optimization algorithms.
We propose two novel network architectures, named U-ADMM-AENet and U-ADMM-BUNet, for abundance estimation and blind unmixing.
We show that the unfolded structures can find corresponding interpretations in machine learning literature, which further demonstrates the effectiveness of proposed methods.
arXiv Detail & Related papers (2020-05-21T18:49:45Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
We present a new class of geometrically-driven optimization algorithms on the orthogonal group $O(d)$.
We show that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, flows and metric learning.
arXiv Detail & Related papers (2020-03-30T15:37:50Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.