LINKs: Large Language Model Integrated Management for 6G Empowered Digital Twin NetworKs
- URL: http://arxiv.org/abs/2412.19811v1
- Date: Mon, 09 Dec 2024 17:41:23 GMT
- Title: LINKs: Large Language Model Integrated Management for 6G Empowered Digital Twin NetworKs
- Authors: Shufan Jiang, Bangyan Lin, Yue Wu, Yuan Gao,
- Abstract summary: This paper explores the application of large language models (LLMs) in managing 6G-empowered DT networks.
Our proposed framework builds up a lazy loading strategy which can minimize transmission delay by retrieving selectively the relevant data.
Simulation results demonstrate the performance improvements in data planning and network management.
- Score: 7.9867096875429615
- License:
- Abstract: In the rapidly evolving landscape of digital twins (DT) and 6G networks, the integration of large language models (LLMs) presents a novel approach to network management. This paper explores the application of LLMs in managing 6G-empowered DT networks, with a focus on optimizing data retrieval and communication efficiency in smart city scenarios. The proposed framework leverages LLMs for intelligent DT problem analysis and radio resource management (RRM) in fully autonomous way without any manual intervention. Our proposed framework -- LINKs, builds up a lazy loading strategy which can minimize transmission delay by selectively retrieving the relevant data. Based on the data retrieval plan, LLMs transform the retrieval task into an numerical optimization problem and utilizing solvers to build an optimal RRM, ensuring efficient communication across the network. Simulation results demonstrate the performance improvements in data planning and network management, highlighting the potential of LLMs to enhance the integration of DT and 6G technologies.
Related papers
- Adaptive Resource Allocation Optimization Using Large Language Models in Dynamic Wireless Environments [25.866960634041092]
Current solutions rely on domain-specific architectures or techniques, and a general DL approach for constrained optimization remains undeveloped.
We propose a large language model for resource allocation (LLM-RAO) to address the complex resource allocation problem while adhering to constraints.
LLM-RAO achieves up to a 40% performance enhancement compared to conventional DL methods and up to an $80$% improvement over analytical approaches.
arXiv Detail & Related papers (2025-02-04T12:56:59Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
We develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) for wireless communication applications.
The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard.
We introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data.
arXiv Detail & Related papers (2025-01-16T16:19:53Z) - NetOrchLLM: Mastering Wireless Network Orchestration with Large Language Models [11.015852090523229]
Large language models (LLMs) have revolutionized various domains by leveraging their sophisticated natural language understanding capabilities.
This paper presents NETORCHLLM, a wireless NETwork ORCHestrator LLM framework that seamlessly orchestrates diverse wireless-specific models.
A comprehensive framework is introduced, demonstrating the practical viability of our approach.
arXiv Detail & Related papers (2024-12-13T12:48:15Z) - Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions [47.791246017237]
Integrated satellite, aerial, and terrestrial networks (ISATNs) represent a sophisticated convergence of diverse communication technologies.
This paper explores the transformative potential of integrating Large Language Models (LLMs) into ISATNs.
arXiv Detail & Related papers (2024-07-05T15:23:43Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - An Overview of Machine Learning-Enabled Optimization for Reconfigurable Intelligent Surfaces-Aided 6G Networks: From Reinforcement Learning to Large Language Models [16.3772708546698]
We provide an overview of machine learning (ML)-enabled optimization for RIS-aided 6G networks.
Different from existing studies, this work further discusses how large language models (LLMs) can be combined with RL to handle network optimization problems.
arXiv Detail & Related papers (2024-05-09T03:07:59Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - NetLLM: Adapting Large Language Models for Networking [36.61572542761661]
We present NetLLM, the first framework that provides a coherent design to harness the powerful capabilities of LLMs with low efforts to solve networking problems.
Specifically, NetLLM empowers the LLM to effectively process multimodal data in networking and efficiently generate task-specific answers.
arXiv Detail & Related papers (2024-02-04T04:21:34Z) - Large Language Model Enhanced Multi-Agent Systems for 6G Communications [94.45712802626794]
We propose a multi-agent system with customized communication knowledge and tools for solving communication related tasks using natural language.
We validate the effectiveness of the proposed multi-agent system by designing a semantic communication system.
arXiv Detail & Related papers (2023-12-13T02:35:57Z) - Harnessing Scalable Transactional Stream Processing for Managing Large
Language Models [Vision] [4.553891255178496]
Large Language Models (LLMs) have demonstrated extraordinary performance across a broad array of applications.
This paper introduces TStreamLLM, a revolutionary framework integrating Transactional Stream Processing (TSP) with LLM management.
We showcase its potential through practical use cases like real-time patient monitoring and intelligent traffic management.
arXiv Detail & Related papers (2023-07-17T04:01:02Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.