Harnessing Scalable Transactional Stream Processing for Managing Large
Language Models [Vision]
- URL: http://arxiv.org/abs/2307.08225v1
- Date: Mon, 17 Jul 2023 04:01:02 GMT
- Title: Harnessing Scalable Transactional Stream Processing for Managing Large
Language Models [Vision]
- Authors: Shuhao Zhang, Xianzhi Zeng, Yuhao Wu, Zhonghao Yang
- Abstract summary: Large Language Models (LLMs) have demonstrated extraordinary performance across a broad array of applications.
This paper introduces TStreamLLM, a revolutionary framework integrating Transactional Stream Processing (TSP) with LLM management.
We showcase its potential through practical use cases like real-time patient monitoring and intelligent traffic management.
- Score: 4.553891255178496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated extraordinary performance
across a broad array of applications, from traditional language processing
tasks to interpreting structured sequences like time-series data. Yet, their
effectiveness in fast-paced, online decision-making environments requiring
swift, accurate, and concurrent responses poses a significant challenge. This
paper introduces TStreamLLM, a revolutionary framework integrating
Transactional Stream Processing (TSP) with LLM management to achieve remarkable
scalability and low latency. By harnessing the scalability, consistency, and
fault tolerance inherent in TSP, TStreamLLM aims to manage continuous &
concurrent LLM updates and usages efficiently. We showcase its potential
through practical use cases like real-time patient monitoring and intelligent
traffic management. The exploration of synergies between TSP and LLM management
can stimulate groundbreaking developments in AI and database research. This
paper provides a comprehensive overview of challenges and opportunities in this
emerging field, setting forth a roadmap for future exploration and development.
Related papers
- Adaptive Draft-Verification for Efficient Large Language Model Decoding [24.347886232342862]
Large language model (LLM) decoding involves generating a sequence of tokens based on a given context.
The typical autoregressive decoding method requires a separate forward pass through the model for each token generated.
We introduce ADED, which accelerates LLM decoding without requiring fine-tuning.
arXiv Detail & Related papers (2024-06-27T22:20:39Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
We propose an algorithmic framework that fine-tunes vision-language models (VLMs) with reinforcement learning (RL)
Our framework provides a task description and then prompts the VLM to generate chain-of-thought (CoT) reasoning.
We demonstrate that our proposed framework enhances the decision-making capabilities of VLM agents across various tasks.
arXiv Detail & Related papers (2024-05-16T17:50:19Z) - When Large Language Models Meet Optical Networks: Paving the Way for Automation [17.4503217818141]
We propose a framework of LLM-empowered optical networks, facilitating intelligent control of the physical layer and efficient interaction with the application layer.
The proposed framework is verified on two typical tasks: network alarm analysis and network performance optimization.
The good response accuracies and sematic similarities of 2,400 test situations exhibit the great potential of LLM in optical networks.
arXiv Detail & Related papers (2024-05-14T10:46:33Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - NetLLM: Adapting Large Language Models for Networking [36.61572542761661]
We present NetLLM, the first framework that provides a coherent design to harness the powerful capabilities of LLMs with low efforts to solve networking problems.
Specifically, NetLLM empowers the LLM to effectively process multimodal data in networking and efficiently generate task-specific answers.
arXiv Detail & Related papers (2024-02-04T04:21:34Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
We present a new ICL framework for visual understanding with multi-modal output enabled.
First, we quantize and embed both text and visual prompt into a unified representational space.
Then a decoder-only sparse transformer architecture is employed to perform generative modeling on them.
arXiv Detail & Related papers (2023-12-05T06:02:21Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.