Predicting Human Brain States with Transformer
- URL: http://arxiv.org/abs/2412.19814v1
- Date: Wed, 11 Dec 2024 00:18:39 GMT
- Title: Predicting Human Brain States with Transformer
- Authors: Yifei Sun, Mariano Cabezas, Jiah Lee, Chenyu Wang, Wei Zhang, Fernando Calamante, Jinglei Lv,
- Abstract summary: We show that a self-attention-based model can accurately predict the brain states up to 5.04s with the previous 21.6s.
These promising initial results demonstrate the possibility of developing gen-erative models for fMRI data.
- Score: 45.25907962341717
- License:
- Abstract: The human brain is a complex and highly dynamic system, and our current knowledge of its functional mechanism is still very limited. Fortunately, with functional magnetic resonance imaging (fMRI), we can observe blood oxygen level-dependent (BOLD) changes, reflecting neural activity, to infer brain states and dynamics. In this paper, we ask the question of whether the brain states rep-resented by the regional brain fMRI can be predicted. Due to the success of self-attention and the transformer architecture in sequential auto-regression problems (e.g., language modelling or music generation), we explore the possi-bility of the use of transformers to predict human brain resting states based on the large-scale high-quality fMRI data from the human connectome project (HCP). Current results have shown that our model can accurately predict the brain states up to 5.04s with the previous 21.6s. Furthermore, even though the prediction error accumulates for the prediction of a longer time period, the gen-erated fMRI brain states reflect the architecture of functional connectome. These promising initial results demonstrate the possibility of developing gen-erative models for fMRI data using self-attention that learns the functional or-ganization of the human brain. Our code is available at: https://github.com/syf0122/brain_state_pred.
Related papers
- Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data [14.815462507141163]
Brain Age Gap Estimation (BrainAGE) offers a neuroimaging biomarker for understanding brain age.
Current approaches primarily use T1-weighted magnetic resonance imaging (T1w MRI) data, capturing only structural brain information.
We developed a deep learning model using a VGG-based architecture for both modalities and combined their predictions using linear regression.
Our model achieved a mean absolute error (MAE) of 3.95 years and an $R2$ of 0.943 on the test set, outperforming existing models trained on similar data.
arXiv Detail & Related papers (2024-12-01T21:54:08Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Teaching CORnet Human fMRI Representations for Enhanced Model-Brain Alignment [2.035627332992055]
Functional magnetic resonance imaging (fMRI) as a widely used technique in cognitive neuroscience can record neural activation in the human visual cortex during the process of visual perception.
This study proposed ReAlnet-fMRI, a model based on the SOTA vision model CORnet but optimized using human fMRI data through a multi-layer encoding-based alignment framework.
The fMRI-optimized ReAlnet-fMRI exhibited higher similarity to the human brain than both CORnet and the control model in within-and across-subject as well as within- and across-modality model-brain (fMRI and EEG
arXiv Detail & Related papers (2024-07-15T03:31:42Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
Increasing brain age with respect to chronological age can reflect increased vulnerability to neurodegeneration and cognitive decline.
NeuroVNN is pre-trained as a regression model on healthy population to predict chronological age.
NeuroVNN adds anatomical interpretability to brain age and has a scale-free' characteristic that allows its transference to datasets curated according to any arbitrary brain atlas.
arXiv Detail & Related papers (2024-02-12T14:46:31Z) - SwiFT: Swin 4D fMRI Transformer [17.95502427633986]
We present SwiFTS (win 4D fMRI Transformer), a Swin Transformer architecture that can learn brain dynamics directly from volumes fMRI.
We evaluate SwiFT using multiple large-scale resting-state fMRI datasets to predict sex age and cognitive intelligence.
arXiv Detail & Related papers (2023-07-12T04:53:36Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormer is a general hybrid Transformer architecture for brain disease classification with single fMRI volume.
BrainFormer is constructed by modeling the local cues within each voxel with 3D convolutions.
We evaluate BrainFormer on five independently acquired datasets including ABIDE, ADNI, MPILMBB, ADHD-200 and ECHO.
arXiv Detail & Related papers (2022-08-05T07:54:10Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z) - FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain
Network Generation [11.434951542977515]
We develop FBNETGEN, a task-aware and interpretable fMRI analysis framework via deep brain network generation.
Along with the process, the key novel component is the graph generator which learns to transform raw time-series features into task-oriented brain networks.
Our learnable graphs also provide unique interpretations by highlighting prediction-related brain regions.
arXiv Detail & Related papers (2022-05-25T03:26:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.