Multi-atlas Ensemble Graph Neural Network Model For Major Depressive Disorder Detection Using Functional MRI Data
- URL: http://arxiv.org/abs/2412.19833v1
- Date: Sat, 21 Dec 2024 17:08:03 GMT
- Title: Multi-atlas Ensemble Graph Neural Network Model For Major Depressive Disorder Detection Using Functional MRI Data
- Authors: Nojod M. Alotaibi, Areej M. Alhothali, Manar S. Ali,
- Abstract summary: Major depressive disorder (MDD) is one of the most common mental disorders, with significant impacts on many daily activities and quality of life.
The current diagnostic approach for MDD primarily relies on clinical observations and patient-reported symptoms.
Deep learning techniques have been widely applied to neuroimaging data to help with early mental health disorder detection.
This research aimed to develop an ensemble-based GNN model capable of detecting discriminative features from rs-fMRI images.
- Score: 0.0
- License:
- Abstract: Major depressive disorder (MDD) is one of the most common mental disorders, with significant impacts on many daily activities and quality of life. It stands as one of the most common mental disorders globally and ranks as the second leading cause of disability. The current diagnostic approach for MDD primarily relies on clinical observations and patient-reported symptoms, overlooking the diverse underlying causes and pathophysiological factors contributing to depression. Therefore, scientific researchers and clinicians must gain a deeper understanding of the pathophysiological mechanisms involved in MDD. There is growing evidence in neuroscience that depression is a brain network disorder, and the use of neuroimaging, such as magnetic resonance imaging (MRI), plays a significant role in identifying and treating MDD. Rest-state functional MRI (rs-fMRI) is among the most popular neuroimaging techniques used to study MDD. Deep learning techniques have been widely applied to neuroimaging data to help with early mental health disorder detection. Recent years have seen a rise in interest in graph neural networks (GNNs), which are deep neural architectures specifically designed to handle graph-structured data like rs-fMRI. This research aimed to develop an ensemble-based GNN model capable of detecting discriminative features from rs-fMRI images for the purpose of diagnosing MDD. Specifically, we constructed an ensemble model by combining features from multiple brain region segmentation atlases to capture brain complexity and detect distinct features more accurately than single atlas-based models. Further, the effectiveness of our model is demonstrated by assessing its performance on a large multi-site MDD dataset. The best performing model among all folds achieved an accuracy of 75.80%, a sensitivity of 88.89%, a specificity of 61.84%, a precision of 71.29%, and an F1-score of 79.12%.
Related papers
- Deep Learning for Early Alzheimer Disease Detection with MRI Scans [1.9806397201363817]
Alzheimer's disease requires diagnosis by a detailed assessment of MRI scans and neuropsychological tests of the patients.
This project compares existing deep learning models in the pursuit of enhancing the accuracy and efficiency of AD diagnosis.
We perform rigorous evaluation to determine strengths and weaknesses for each model by considering sensitivity, specificity, and computational efficiency.
arXiv Detail & Related papers (2025-01-17T07:30:16Z) - Early diagnosis of Alzheimer's disease from MRI images with deep learning model [0.7673339435080445]
Alzheimer's disease is the most common cause of dementia worldwide.
classification of dementia involves approaches such as medical history review, neuropsychological tests, and magnetic resonance imaging (MRI)
In this article, a pre-trained convolutional neural network has been applied to the DEMNET dementia network to extract key features from AD images.
arXiv Detail & Related papers (2024-09-27T15:07:26Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics.
We generate high-quality synthetic fMRI data based on user-supplied demographics.
arXiv Detail & Related papers (2024-05-13T17:49:20Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions.
Key evidence from neuroimaging data for pathological commonness remains unrevealed.
We build a deep learning model, using multi-site functional magnetic resonance imaging data, for classifying 5 different brain disorders from healthy controls.
arXiv Detail & Related papers (2023-02-23T09:22:05Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - Classification of ADHD Patients Using Kernel Hierarchical Extreme
Learning Machine [3.39487428163997]
We utilize the dynamics of brain functional connectivity to model features from medical imaging data.
Our results achieved superior classification rates compared to the state-of-the-art models.
arXiv Detail & Related papers (2022-06-28T05:17:54Z) - Classification of ADHD Patients by Kernel Hierarchical Extreme Learning
Machine [4.168157981135698]
We consider the dynamics of brain functional connectivity, modeling a functional brain dynamics model from medical imaging.
In this paper, we consider comparisons of fMRI imaging data on 23 ADHD and 45 NC children.
Our experimental methods achieved better classification results than existing methods.
arXiv Detail & Related papers (2022-02-18T01:32:55Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease which destroys brain cells and causes loss to patient's memory.
In this paper, we have proposed a smart and accurate way of diagnosing AD based on a two-dimensional deep convolutional neural network (2D-DCNN) using imbalanced three-dimensional MRI dataset.
The model classifies MRI into three categories: AD, mild cognitive impairment, and normal control: and has achieved 99.89% classification accuracy with imbalanced classes.
arXiv Detail & Related papers (2021-01-08T06:51:08Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.