Deep Learning for Early Alzheimer Disease Detection with MRI Scans
- URL: http://arxiv.org/abs/2501.09999v1
- Date: Fri, 17 Jan 2025 07:30:16 GMT
- Title: Deep Learning for Early Alzheimer Disease Detection with MRI Scans
- Authors: Mohammad Rafsan, Tamer Oraby, Upal Roy, Sanjeev Kumar, Hansapani Rodrigo,
- Abstract summary: Alzheimer's disease requires diagnosis by a detailed assessment of MRI scans and neuropsychological tests of the patients.
This project compares existing deep learning models in the pursuit of enhancing the accuracy and efficiency of AD diagnosis.
We perform rigorous evaluation to determine strengths and weaknesses for each model by considering sensitivity, specificity, and computational efficiency.
- Score: 1.9806397201363817
- License:
- Abstract: Alzheimer's Disease is a neurodegenerative condition characterized by dementia and impairment in neurological function. The study primarily focuses on the individuals above age 40, affecting their memory, behavior, and cognitive processes of the brain. Alzheimer's disease requires diagnosis by a detailed assessment of MRI scans and neuropsychological tests of the patients. This project compares existing deep learning models in the pursuit of enhancing the accuracy and efficiency of AD diagnosis, specifically focusing on the Convolutional Neural Network, Bayesian Convolutional Neural Network, and the U-net model with the Open Access Series of Imaging Studies brain MRI dataset. Besides, to ensure robustness and reliability in the model evaluations, we address the challenge of imbalance in data. We then perform rigorous evaluation to determine strengths and weaknesses for each model by considering sensitivity, specificity, and computational efficiency. This comparative analysis would shed light on the future role of AI in revolutionizing AD diagnostics but also paved ways for future innovation in medical imaging and the management of neurodegenerative diseases.
Related papers
- Brain-Aware Readout Layers in GNNs: Advancing Alzheimer's early Detection and Neuroimaging [1.074960192271861]
This study introduces a novel brain-aware readout layer (BA readout layer) for Graph Neural Networks (GNNs)
By clustering brain regions based on functional connectivity and node embedding, this layer improves the GNN's capability to capture complex brain network characteristics.
Our results show that GNNs with the BA readout layer significantly outperform traditional models in predicting the Preclinical Alzheimer's Cognitive Composite (PACC) score.
arXiv Detail & Related papers (2024-10-03T05:04:45Z) - Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models [0.0]
We evaluate state-of-the-art brain anomaly detection models based on Variational Autoencoders and Diffusion Models.
Our findings indicate that some models effectively detect the primary alterations characterizing Down syndrome's brain anatomy.
arXiv Detail & Related papers (2024-09-20T12:01:15Z) - Multi-Resolution Graph Analysis of Dynamic Brain Network for Classification of Alzheimer's Disease and Mild Cognitive Impairment [0.0]
Alzheimer's disease (AD) is a neurodegenerative disorder marked by memory loss and cognitive decline.
Traditional methods, such as Pearson's correlation, have been used to calculate association matrices.
We introduce a novel method that integrates discrete wavelet transform (DWT) and graph theory to model the dynamic behavior of brain networks.
arXiv Detail & Related papers (2024-09-06T07:26:14Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Leveraging Deep Learning and Xception Architecture for High-Accuracy MRI Classification in Alzheimer Diagnosis [11.295734491885682]
This study aims to classify MRI images using deep learning models to identify different stages of Alzheimer Disease.
Our experimental results show that the deep learning framework based on the Xception model achieved a 99.6% accuracy rate in the multi-class MRI image classification task.
arXiv Detail & Related papers (2024-03-24T16:11:27Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease which destroys brain cells and causes loss to patient's memory.
In this paper, we have proposed a smart and accurate way of diagnosing AD based on a two-dimensional deep convolutional neural network (2D-DCNN) using imbalanced three-dimensional MRI dataset.
The model classifies MRI into three categories: AD, mild cognitive impairment, and normal control: and has achieved 99.89% classification accuracy with imbalanced classes.
arXiv Detail & Related papers (2021-01-08T06:51:08Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z) - Multimodal Inductive Transfer Learning for Detection of Alzheimer's
Dementia and its Severity [39.57255380551913]
We present a novel architecture that leverages acoustic, cognitive, and linguistic features to form a multimodal ensemble system.
It uses specialized artificial neural networks with temporal characteristics to detect Alzheimer's dementia (AD) and its severity.
Our system achieves state-of-the-art test accuracy, precision, recall, and F1-score of 83.3% each for AD classification, and state-of-the-art test root mean squared error (RMSE) of 4.60 for MMSE score regression.
arXiv Detail & Related papers (2020-08-30T21:47:26Z) - A Survey on Deep Learning for Neuroimaging-based Brain Disorder Analysis [38.213459556446765]
Deep learning has been recently used for the analysis of neuroimages, such as structural magnetic resonance imaging (MRI), functional MRI, and positron emission tomography (PET)
This paper reviews the applications of deep learning methods for neuroimaging-based brain disorder analysis.
arXiv Detail & Related papers (2020-05-10T04:20:50Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.