Quantum Bayesian Networks for Machine Learning in Oil-Spill Detection
- URL: http://arxiv.org/abs/2412.19843v2
- Date: Tue, 29 Apr 2025 07:45:17 GMT
- Title: Quantum Bayesian Networks for Machine Learning in Oil-Spill Detection
- Authors: Owais Ishtiaq Siddiqui, Nouhaila Innan, Alberto Marchisio, Mohamed Bennai, Muhammad Shafique,
- Abstract summary: Quantum Machine Learning has shown promise in diverse applications such as environmental monitoring, healthcare diagnostics, and financial modeling.<n>One critical challenge is handling imbalanced datasets, where rare events are often misclassified due to skewed data distributions.<n>This paper introduces a Bayesian approach utilizing QBNs to classify satellite-derived imbalanced datasets, distinguishing oil-spill'' from non-spill'' regions.
- Score: 3.9554540293311864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Machine Learning (QML) has shown promise in diverse applications such as environmental monitoring, healthcare diagnostics, and financial modeling. However, its practical implementation faces challenges, including limited quantum hardware and the complexity of integrating quantum algorithms with classical systems. One critical challenge is handling imbalanced datasets, where rare events are often misclassified due to skewed data distributions. Quantum Bayesian Networks (QBNs) address this issue by enhancing feature extraction and improving the classification of rare events such as oil spills. This paper introduces a Bayesian approach utilizing QBNs to classify satellite-derived imbalanced datasets, distinguishing ``oil-spill'' from ``non-spill'' regions. QBNs leverage probabilistic reasoning and quantum state preparation to integrate quantum enhancements into classical machine learning architectures. Our approach achieves a 0.99 AUC score, demonstrating its efficacy in anomaly detection and advancing precise environmental monitoring and management. While integration enhances classification performance, dataset-specific challenges require further optimization.
Related papers
- Identifying Flaky Tests in Quantum Code: A Machine Learning Approach [5.323578182914324]
Indeterminacy, a fundamental characteristic of quantum systems, increases the likelihood of flaky tests in quantum programs.
We present a novel machine learning platform that leverages multiple machine learning models to automatically detect flaky tests in quantum programs.
arXiv Detail & Related papers (2025-02-06T19:43:51Z) - A learning agent-based approach to the characterization of open quantum systems [0.0]
We introduce the open Quantum Model Learning Agent (oQMLA) framework to account for Markovian noise through the Liouvillian formalism.
By simultaneously learning the Hamiltonian and jump operators, oQMLA independently captures both the coherent and incoherent dynamics of a system.
We validate our implementation in simulated scenarios of increasing complexity, demonstrating its robustness to hardware-induced measurement errors.
arXiv Detail & Related papers (2025-01-09T16:25:17Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
This study explores the intersection of quantum computing and Machine Learning (ML)
It evaluates the effectiveness of hybrid quantum-classical algorithms, such as the data re-uploading scheme and the patch Generative Adversarial Networks (GAN) model, on small-scale quantum devices.
arXiv Detail & Related papers (2024-04-01T20:55:03Z) - Quantum Mixed-State Self-Attention Network [3.1280831148667105]
This paper introduces a novel Quantum Mixed-State Self-Attention Network (QMSAN) for natural language processing tasks.<n>QMSAN uses a quantum attention mechanism based on mixed state, allowing for direct similarity estimation between queries and keys in the quantum domain.<n>We also propose an innovative quantum positional encoding scheme, implemented through fixed quantum gates within the circuit, improving the model's ability to capture sequence information without additional qubit resources.
arXiv Detail & Related papers (2024-03-05T11:29:05Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
Grover-inspired Quantum Hard Attention Mechanism (GQHAM) is proposed.
GQHAN adeptly surmounts the non-differentiability hurdle, surpassing the efficacy of extant quantum soft self-attention mechanisms.
The proposal of GQHAN lays the foundation for future quantum computers to process large-scale data, and promotes the development of quantum computer vision.
arXiv Detail & Related papers (2024-01-25T11:11:16Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Coreset selection can accelerate quantum machine learning models with
provable generalization [6.733416056422756]
Quantum neural networks (QNNs) and quantum kernels stand as prominent figures in the realm of quantum machine learning.
We present a unified approach: coreset selection, aimed at expediting the training of QNNs and quantum kernels.
arXiv Detail & Related papers (2023-09-19T08:59:46Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
We implement methods for the efficient preparation of quantum states representing encoded image data using variational, genetic and matrix product state based algorithms.
Results show that these methods can approximately prepare states to a level suitable for QML using circuits two orders of magnitude shallower than a standard state preparation implementation.
arXiv Detail & Related papers (2023-09-18T01:49:36Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.