Quantum Mixed-State Self-Attention Network
- URL: http://arxiv.org/abs/2403.02871v3
- Date: Sat, 30 Nov 2024 22:31:53 GMT
- Title: Quantum Mixed-State Self-Attention Network
- Authors: Fu Chen, Qinglin Zhao, Li Feng, Chuangtao Chen, Yangbin Lin, Jianhong Lin,
- Abstract summary: This paper introduces a novel Quantum Mixed-State Self-Attention Network (QMSAN) for natural language processing tasks.
QMSAN uses a quantum attention mechanism based on mixed state, allowing for direct similarity estimation between queries and keys in the quantum domain.
We also propose an innovative quantum positional encoding scheme, implemented through fixed quantum gates within the circuit, improving the model's ability to capture sequence information without additional qubit resources.
- Score: 3.1280831148667105
- License:
- Abstract: Attention mechanisms have revolutionized natural language processing. Combining them with quantum computing aims to further advance this technology. This paper introduces a novel Quantum Mixed-State Self-Attention Network (QMSAN) for natural language processing tasks. Our model leverages quantum computing principles to enhance the effectiveness of self-attention mechanisms. QMSAN uses a quantum attention mechanism based on mixed state, allowing for direct similarity estimation between queries and keys in the quantum domain. This approach leads to more effective attention coefficient calculations. We also propose an innovative quantum positional encoding scheme, implemented through fixed quantum gates within the circuit, improving the model's ability to capture sequence information without additional qubit resources. In numerical experiments of text classification tasks on public datasets, QMSAN outperforms Quantum Self-Attention Neural Network (QSANN). Furthermore, we demonstrate QMSAN's robustness in different quantum noise environments, highlighting its potential for near-term quantum devices.
Related papers
- A learning agent-based approach to the characterization of open quantum systems [0.0]
We introduce the open Quantum Model Learning Agent (oQMLA) framework to account for Markovian noise through the Liouvillian formalism.
By simultaneously learning the Hamiltonian and jump operators, oQMLA independently captures both the coherent and incoherent dynamics of a system.
We validate our implementation in simulated scenarios of increasing complexity, demonstrating its robustness to hardware-induced measurement errors.
arXiv Detail & Related papers (2025-01-09T16:25:17Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum Self-Attention Neural Networks for Text Classification [8.975913540662441]
We propose a new simple network architecture, called the quantum self-attention neural network (QSANN)
We introduce the self-attention mechanism into quantum neural networks and then utilize a Gaussian projected quantum self-attention serving as a sensible quantum version of self-attention.
Our method exhibits robustness to low-level quantum noises and showcases resilience to quantum neural network architectures.
arXiv Detail & Related papers (2022-05-11T16:50:46Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Attention-based Quantum Tomography [9.818293236208413]
"Attention-based Quantum Tomography" is a quantum state reconstruction using an attention mechanism-based generative network.
We show AQT can accurately reconstruct the density matrix associated with a noisy quantum state experimentally realized in an IBMQ quantum computer.
arXiv Detail & Related papers (2020-06-22T17:50:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.